
AGENTBUILDER

An Integrated Toolkit for 
Constructing Intelligent 

Software Agents

Reference Manual

Version 1.4 Rev. 0

June 16, 2004

Acronymics, Inc.
1301 West 8th St., #28
Mesa, AZ 85201-3841

http://www.agentbuilder.com



Acronymics, Inc.
1301 West 8th St., #28
Mesa, AZ 85201-3841

(480) 615-8543
FAX:  (480) 615-1297

http://www.acronymics.com
http://www.agentbuilder.com

© Copyright 2004, Acronymics, Inc..
All Rights Reserved

AgentBuilder® is a Registered Trademark of 
Acronymics, Inc.



   
AgentBuilder 
Reference Manual
 – 3



   
 – 4



   
TABLE OF CONTENTS

CHAPTER 1 — AGENT CONSTRUCTION TOOLS........................................RM-1
A Overview of the Toolkit....................................................................................RM-2

Tool Introduction ..................................................................... RM-4
User Files ....................................................................................RM-4

Common Interface Features..................................................... RM-5
Windows menu ...........................................................................RM-5
Help Menus ................................................................................RM-5
Tools Menu .................................................................................RM-7
Tree Paradigm ............................................................................RM-8
Building Complex Expressions ..................................................RM-8
More Information .....................................................................RM-10

B Project Manager ..............................................................................................RM-12
Overview................................................................................ RM-12
Operation ............................................................................... RM-13

Using the Project Tree ..............................................................RM-13
Creating a New Project .............................................................RM-14
Creating a New Agency ............................................................RM-14
Creating a New Agent ..............................................................RM-14
Cutting, Copying and Pasting an Agent ...................................RM-14
Modifying Project, Agency and Agent Properties ...................RM-15
Deleting Projects, Agencies and Agents ..................................RM-15
Editing AgentBuilder Properties ..............................................RM-16
Launching AgentBuilder Tools ................................................RM-20
Switching AgentBuilder Windows ...........................................RM-22
Accessing Help .........................................................................RM-22
Exiting AgentBuilder ................................................................RM-22
i



   

ii
C Ontology Manager ..........................................................................................RM-23
Ontology Manager ................................................................. RM-23

Overview ..................................................................................RM-23
Operation ..................................................................................RM-24

Using the Ontology Tree .................................................................  RM-24
Creating a New Ontology ................................................................  RM-25
Cutting, Copying and Pasting an Ontology .....................................  RM-25
Modifying Ontology Properties.......................................................  RM-26
Deleting Ontologies .........................................................................  RM-26
Launching Ontology Tools ..............................................................  RM-26
Switching AgentBuilder Windows..................................................  RM-27
Accessing Help ................................................................................  RM-27
Exiting AgentBuilder.......................................................................  RM-27

Concept Mapper..................................................................... RM-27
Overview .........................................................................................  RM-27

Operation ..................................................................................RM-28
Creating a New Concept..................................................................  RM-28
Cutting, Copying and Pasting a Concept.........................................  RM-30
Creating a New Link........................................................................  RM-30
Moving an Existing Concept ...........................................................  RM-30
Moving Multiple Concepts ..............................................................  RM-30
Deleting an Existing Concept ..........................................................  RM-31
Deleting an Existing Link................................................................  RM-31
Changing the Link Type of an Existing Link ..................................  RM-31
Viewing and Altering the Properties of an Existing Concept .........  RM-31
Creating an Associated Class from an Existing Concept ................  RM-32
Viewing and Altering the Properties of an Existing Link ...............  RM-32
Saving a Concept Map.....................................................................  RM-33
Saving the Concept Map to a File ...................................................  RM-33
Clearing a Concept Map ..................................................................  RM-34
Switching Windows.........................................................................  RM-35
Accessing Help ................................................................................  RM-35
Closing the Concept Mapper ...........................................................  RM-35
Exiting AgentBuilder.......................................................................  RM-35

Object Modeler ...................................................................... RM-36
Overview ..................................................................................RM-36
Operation ..................................................................................RM-38

Creating a New Class ......................................................................  RM-38



   
Cutting, Copying and Pasting a Class .............................................  RM-40
Viewing and Altering the Properties of an Existing Class ..............  RM-40
 Creating a New Link.......................................................................  RM-40
Moving an Existing Class................................................................  RM-41
Moving Multiple Classes.................................................................  RM-42
Deleting an Existing Class...............................................................  RM-42
Deleting an Existing Link................................................................  RM-42
Changing the Link Type of an Existing Link ..................................  RM-42
Viewing and Altering the Properties of an Existing Link ...............  RM-42
Saving a Object Model ....................................................................  RM-43
Saving the Object Model to a File ...................................................  RM-43
Clearing an Object Model................................................................  RM-44
Importing Class Files.......................................................................  RM-44
Updating Objects .............................................................................  RM-45
Listing Undefined Classes ...............................................................  RM-46
Exporting Java Files ........................................................................  RM-47
Switching Windows.........................................................................  RM-48
Accessing Help ................................................................................  RM-49
Closing the Object Modeler.............................................................  RM-49
Exiting AgentBuilder.......................................................................  RM-49

D Agency Manager.............................................................................................RM-50
Agency Manager.................................................................... RM-51

Using the Agency Manager ......................................................RM-51
 Using the Tabbed Pane ...................................................................  RM-51
Opening an Agency .........................................................................  RM-52
 Saving the Current Agency.............................................................  RM-52
Creating a New Agent .....................................................................  RM-53
Importing a Protocol ........................................................................  RM-53
Updating Protocols ..........................................................................  RM-54
Creating a JVM Group ....................................................................  RM-54
Assigning Agents to a JVM Group..................................................  RM-55
Viewing/Editing Agency Properties ................................................  RM-56
Switching Windows.........................................................................  RM-57
Accessing Help ................................................................................  RM-57
Exiting AgentBuilder.......................................................................  RM-58

Agency Viewer ...................................................................... RM-58
 Overview .................................................................................RM-58
 Operation: Running an Agency ...............................................RM-60

 Setting Agency in Register Mode...................................................  RM-60
iii



   

iv
 Registering the Agents....................................................................  RM-60
 Running and Resetting agents ........................................................  RM-61
 Pausing and Unpausing the agents .................................................  RM-61
Displaying the Agent's Message History Dialog.............................  RM-61
 Displaying the Agent's Status Window ..........................................  RM-62
 Opening and Saving Runtime Messages ........................................  RM-63
 Specifying Message Buffer Size.....................................................  RM-63
 Creating a Runtime Message log....................................................  RM-63
Handling High Volumes of Communication...................................  RM-63
Viewing and Altering the Properties of the Agency........................  RM-64
Viewing and Altering the Properties of the Agent ..........................  RM-64
Changing the Agent's Icon...............................................................  RM-64
Saving Agency Properties ...............................................................  RM-65
 Switching Windows........................................................................  RM-65
 Accessing Help ...............................................................................  RM-65
 Closing the Agency Viewer............................................................  RM-66
 Exiting AgentBuilder......................................................................  RM-66

E Agent Manager................................................................................................RM-67
Overview................................................................................ RM-68
Operation ............................................................................... RM-68

Using the Tabbed Pane .............................................................RM-68
Creating a New Agent ..............................................................RM-69
Opening an Agent .....................................................................RM-72
Saving the Current Agent .........................................................RM-73
Saving the Agent to a File ........................................................RM-73
Viewing/Editing Agent Properties ...........................................RM-74
Generating the Agent Definition ..............................................RM-74
Running the Agent ....................................................................RM-75
Running Multiple Agents on Different Machines ....................RM-78
Switching Windows ..................................................................RM-78
Accessing Help .........................................................................RM-79
Exiting AgentBuilder ................................................................RM-79

Action Editor.......................................................................... RM-79
Overview ..................................................................................RM-79
Operation ..................................................................................RM-81

Creating an Action...........................................................................  RM-81
Adding an Action.............................................................................  RM-82



   
Viewing Defined Actions ................................................................  RM-82
Editing a Defined Action .................................................................  RM-82
Deleting a Defined Action ...............................................................  RM-82
Saving the Actions...........................................................................  RM-83
Switching Windows.........................................................................  RM-83
Accessing Help ................................................................................  RM-83
Closing the Action Editor ................................................................  RM-83
Exiting AgentBuilder.......................................................................  RM-84

Commitment Editor ............................................................... RM-84
Overview ..................................................................................RM-84
Operation ..................................................................................RM-85

Creating a Commitment...................................................................  RM-85
Specifying Parameter Values...........................................................  RM-87
Specifying a User-Defined Time.....................................................  RM-89
Adding a Commitment ....................................................................  RM-90
Editing a Defined Commitment.......................................................  RM-91
Deleting a Defined Commitment.....................................................  RM-91
Saving Commitments ......................................................................  RM-91
Switching Windows.........................................................................  RM-91
Accessing Help ................................................................................  RM-92
Closing the Commitment Editor......................................................  RM-92
Exiting AgentBuilder.......................................................................  RM-92

PAC Editor............................................................................. RM-92
Overview ..................................................................................RM-93
Operation ..................................................................................RM-93

Importing PACs...............................................................................  RM-93
Packages and Short Names..............................................................  RM-96
Viewing Defined PACs ...................................................................  RM-97
Deleting a Defined PAC ..................................................................  RM-97
Updating PACs ................................................................................  RM-98
Defining PAC Instances ..................................................................  RM-98
Specifying Constructors for PAC Instances ....................................  RM-99
Adding a PAC Instance .................................................................  RM-102
Viewing Defined PAC Instances ...................................................  RM-102
Editing a PAC Instance..................................................................  RM-102
Deleting a Defined PAC Instance..................................................  RM-104
Creating Java Instances .................................................................  RM-104
Adding a Java Instance ..................................................................  RM-105
Viewing Defined Java Instances....................................................  RM-105
v



   

vi
Editing a Java Instance ..................................................................  RM-105
Deleting a Defined Java Instance ..................................................  RM-107
Saving ............................................................................................  RM-107
Switching Windows.......................................................................  RM-107
Accessing Help ..............................................................................  RM-107
Closing the PAC Editor .................................................................  RM-108
Exiting AgentBuilder.....................................................................  RM-108

Rule Editor ........................................................................... RM-108
Overview ................................................................................RM-111

Rule Properties ..............................................................................  RM-112
LHS Editor.....................................................................................  RM-113
RHS Editor ....................................................................................  RM-119
Action Panel ..................................................................................  RM-119
Defined RHS Elements Panel........................................................  RM-122
Rule Editor Operations ..................................................................  RM-123
Creating a New Rule......................................................................  RM-123
Loading an Existing Rule ..............................................................  RM-124
Constructing a Simple Mental Condition ......................................  RM-124
Direct Method Invocation..............................................................  RM-125
Return Variable Naming................................................................  RM-126
Using a Predicate Method..............................................................  RM-126
Constructing an Action Statement .................................................  RM-126
Building an Assertion with a New Object .....................................  RM-128
Closing the Rule Editor .................................................................  RM-128

F Protocol Manager. .........................................................................................RM-130
Overview.............................................................................. RM-130
Operation ............................................................................. RM-131

Using the Protocol Tree .................................................................  RM-131
Creating a New Protocol................................................................  RM-131
Cutting, Copying and Pasting a Protocol.......................................  RM-132
Modifying Protocol Properties ......................................................  RM-132
Deleting Protocols .........................................................................  RM-132
Launching Protocol Tools .............................................................  RM-133
Switching AgentBuilder Windows................................................  RM-133
Closing Protocol Manager .............................................................  RM-133
Exiting AgentBuilder.....................................................................  RM-133

Protocol Editor ..................................................................... RM-133
Overview ................................................................................RM-134



   
Operation ................................................................................RM-134
Creating a New State .....................................................................  RM-134
Cutting, Copying and Pasting a State ............................................  RM-135
Creating a New Transition.............................................................  RM-136
Moving a State...............................................................................  RM-137
Moving Multiple States .................................................................  RM-137
Deleting a State..............................................................................  RM-138
Deleting a Transition .....................................................................  RM-138
Viewing and Altering State Properties ..........................................  RM-138
Viewing and Altering Transition Properties..................................  RM-138
Viewing the State Table ................................................................  RM-139
Viewing Roles ...............................................................................  RM-139
Creating Roles ...............................................................................  RM-140
Cutting, Copying and Pasting Roles..............................................  RM-140
Deleting Roles ...............................................................................  RM-141
Viewing and Modifying Role Properties.......................................  RM-141
Saving a Protocol...........................................................................  RM-141
Saving the Protocol to a File..........................................................  RM-141
Clearing the Protocol .....................................................................  RM-142
Closing the Protocol Editor ...........................................................  RM-142

Role Editor ........................................................................... RM-142
Overview ................................................................................RM-142
Operation ................................................................................RM-143

Viewing and Modifying Role Properties.......................................  RM-143
Assigning Agents to Roles ............................................................  RM-144
Updating an Agent.........................................................................  RM-146
Updating All Agents ......................................................................  RM-146
Saving the Roles ............................................................................  RM-146
Switching Windows.......................................................................  RM-147
Closing the Role Editor .................................................................  RM-147
Exiting AgentBuilder.....................................................................  RM-147

Action Editor........................................................................ RM-149
Overview ................................................................................RM-149
Operation ................................................................................RM-150

Creating an Action.........................................................................  RM-150
Adding an Action...........................................................................  RM-151
Viewing Defined Actions ..............................................................  RM-152
Editing a Defined Action ...............................................................  RM-152
vii



   

vii
Deleting a Defined Action .............................................................  RM-152
Saving the Actions.........................................................................  RM-152
Switching Windows.......................................................................  RM-152
Accessing Help ..............................................................................  RM-153
Closing the Action Editor ..............................................................  RM-153
Exiting AgentBuilder.....................................................................  RM-153

Commitment Editor ............................................................. RM-153
Overview ................................................................................RM-154
Operation ................................................................................RM-155

Creating a Commitment.................................................................  RM-155
Specifying Parameter Values.........................................................  RM-156
Specifying a User-Defined Time...................................................  RM-159
Adding a Commitment ..................................................................  RM-160
Editing a Defined Commitment.....................................................  RM-160
Deleting a Defined Commitment...................................................  RM-160
Saving Commitments ....................................................................  RM-161
Switching Windows.......................................................................  RM-161
Accessing Help ..............................................................................  RM-161
Closing the Commitment Editor....................................................  RM-161
Exiting AgentBuilder.....................................................................  RM-161

PAC Editor........................................................................... RM-162
Overview ................................................................................RM-162
Operation ................................................................................RM-163

Importing PACs.............................................................................  RM-163
Viewing Defined PACs .................................................................  RM-165
Deleting a Defined PAC ................................................................  RM-165
Updating PACs ..............................................................................  RM-166
Defining PAC Instances ................................................................  RM-167
Specifying Constructors for PAC Instances ..................................  RM-167
Adding a PAC Instance .................................................................  RM-170
Viewing Defined PAC Instances ...................................................  RM-170
Editing a PAC Instance..................................................................  RM-172
Deleting a Defined PAC Instance..................................................  RM-172
Creating Java Instances .................................................................  RM-172
Adding a Java Instance ..................................................................  RM-173
Viewing Defined Java Instances....................................................  RM-173
Editing a Java Instance ..................................................................  RM-175
Deleting a Defined Java Instance ..................................................  RM-175
Saving ............................................................................................  RM-175
i



   
Switching Windows.......................................................................  RM-175
Accessing Help ..............................................................................  RM-176
Closing the PAC Editor .................................................................  RM-176
Exiting AgentBuilder.....................................................................  RM-176

Rule Editor ........................................................................... RM-176
Overview ................................................................................RM-180

Rule Properties ..............................................................................  RM-181
LHS Editor.....................................................................................  RM-181
RHS Editor ....................................................................................  RM-187
Action Panel ..................................................................................  RM-187
Defined RHS Elements Panel........................................................  RM-190
Rule Editor Operations ..................................................................  RM-192
Creating a New Rule......................................................................  RM-192
Loading an Existing Rule ..............................................................  RM-192
Constructing a Simple Mental Condition ......................................  RM-193
Direct Method Invocation..............................................................  RM-193
Using a Predicate Method..............................................................  RM-194
Constructing an Action Statement .................................................  RM-195
Building an Assertion with a New Object .....................................  RM-196
Closing the Rule Editor .................................................................  RM-197

A Protocol Manager..........................................................................................RM-199
Overview.............................................................................. RM-199
Operation ............................................................................. RM-200

Using the Protocol Tree .................................................................  RM-200
Creating a New Protocol................................................................  RM-200
Cutting, Copying and Pasting a Protocol.......................................  RM-201
Modifiying Protocol Properties .....................................................  RM-201
Deleting Protocols .........................................................................  RM-202
Launching Protocol Tools .............................................................  RM-202
Switching AgentBuilder Windows................................................  RM-202
Closing Protocol Manager .............................................................  RM-202
Exiting AgentBuilder.....................................................................  RM-202

Protocol Editor ..................................................................... RM-202
Overview ................................................................................RM-203
Operation ................................................................................RM-203

Creating a New State .....................................................................  RM-203
Cutting, Copying and Pasting a State ............................................  RM-204
ix



   

x

Creating a New Transition.............................................................  RM-205
Moving a State...............................................................................  RM-206
Deleting a State..............................................................................  RM-207
Deleting a Transition .....................................................................  RM-207
Viewing and Altering State Properties ..........................................  RM-207
Viewing and Altering Transition Properties..................................  RM-207
Viewing the State Table ................................................................  RM-207
Viewing Roles ...............................................................................  RM-208
Creating Roles ...............................................................................  RM-208
Cutting, Copying and Pasting Roles..............................................  RM-209
Deleting Roles ...............................................................................  RM-209
Viewing and Modifying Role Properties.......................................  RM-210
Saving a Protocol...........................................................................  RM-210
Saving the Protocol to a File..........................................................  RM-210
Clearing the Protocol .....................................................................  RM-210
Closing the Protocol Editor ...........................................................  RM-211

Role Editor ........................................................................... RM-211
Overview ................................................................................RM-211
Operation ................................................................................RM-211

Viewing and Modifying Role Properties.......................................  RM-211
Assigning Agents to Roles ............................................................  RM-213
Updating an Agent.........................................................................  RM-214
Updating All Agents ......................................................................  RM-215
Saving the Roles ............................................................................  RM-215
Switching Windows.......................................................................  RM-215
Closing the Role Editor .................................................................  RM-215
Exiting AgentBuilder.....................................................................  RM-216

CHAPTER 2 — PROJECT ACCESSORIES CLASS LIBRARY ....................RM-217
A Project Accessory Classes ............................................................................RM-218

Input and Output .................................................................. RM-218
External Processing.............................................................. RM-221
Threading ............................................................................. RM-222
Arguments and Return Values ............................................. RM-223
PAC Interfaces ..................................................................... RM-223



   
Control Panel Design ........................................................... RM-224
B Building a Control Panel: The HelloWorld Example ...................................RM-229
C Building a Control Panel: A BuyerSeller PAC Example..............................RM-236

CHAPTER 3 — RUN-TIME SYSTEM......................................................RM-251
A Run-Time System .........................................................................................RM-252

Run-Time Agent Engine ...................................................... RM-252
Starting the Agent Engine ......................................................RM-253
Agent Engine Options ............................................................RM-253

RADL File .....................................................................................  RM-254
Classpath........................................................................................  RM-254
Verbose Options ............................................................................  RM-255
Program Output .............................................................................  RM-259
Error Log .......................................................................................  RM-261

Starting the Agent Engine from a Command Line .................RM-262
Java options ...................................................................................  RM-262

Agent Engine Console ............................................................RM-263
MultiAgent Engine Console ...................................................RM-270
Built-in Actions ......................................................................RM-272

Kqml Message Failure Handling ...................................................  RM-279
Agent Engine Cycle ................................................................RM-281
Agent Engine Threads ............................................................RM-282

Appendix A.  Intrinsics .................................................................RM-287
Appendix B.  Runtime Agent Definition Language ....................RM-293
Appendix C.  Operators and Patterns .........................................RM-301

BIND.................................................................................... RM-302
Classes and Subclasses ........................................................ RM-303
EQUALS/NOT_EQUALS................................................... RM-304
NUMERICAL RELATIONS .............................................. RM-304
ARITHMETIC OPERATORS ............................................ RM-305
AND, OR, NOT ................................................................... RM-306

OR patterns .............................................................................RM-306
Example 1 ...............................................................................RM-306
xi



   

xii
Example 2 ...............................................................................RM-307
Example 3 ...............................................................................RM-309

QUANTIFIED PATTERNS ................................................ RM-310
 Vacuously True Quantified Patterns................................... RM-314
BIND Patterns and the EXISTS Patterns............................. RM-316

Example 1 ...............................................................................RM-316
Appendix D.  Default Ontology Object Model (Printable) ..........RM-319
Appendix E.  Agent Description (Printable) ................................RM-327



   
LIST OF F IGURES

Figure 1 . The AgentBuilder Toolkit............................................................. RM-3
Figure 2 . AgentBuilder Project Manger ....................................................... RM-6
Figure 3 . AgentBuilder Help Viewer ........................................................... RM-7
Figure 4 . Accumulator Building Complex Patterns ..................................... RM-9
Figure 5 . The Project Manager................................................................... RM-12
Figure 6 . User Preference Dialog............................................................... RM-17
Figure 7 . Preferences Dialog Showing Directories .................................... RM-17
Figure 8 . Directory Dialog ......................................................................... RM-18
Figure 9 . Preference Panel for Setting Appearances.................................. RM-19
Figure 10 . Color Preference Dialog ........................................................... RM-20
Figure 11 . TCP/IP Socket Options............................................................. RM-21
Figure 12 . The Ontology Manager ............................................................. RM-24
Figure 13 . Ontology Properties .................................................................. RM-25
Figure 14 . The Concept Mapper ................................................................ RM-29
Figure 15 . The Concept Properties Dialog................................................. RM-32
Figure 16 . Link Properties Dialog.............................................................. RM-33
Figure 17 . Concept Map Generate Printable Output.................................. RM-34
Figure 18 . Object Modeler ......................................................................... RM-37
Figure 19 . Class Properties Dialog............................................................. RM-39
Figure 20 . Link Properties Dialog.............................................................. RM-43
Figure 21 . Object Modeler Import Dialog ................................................. RM-45
Figure 22 . Update Dialog ........................................................................... RM-46
Figure 23 . Object Modeler Export Dialog ................................................. RM-47
Figure 24 . Directory Dialog ....................................................................... RM-48
Figure 25 . Agency Manager....................................................................... RM-50
Figure 26 . Open Agency Dialog ................................................................ RM-53
Figure 27 . Agent Properties Dialog............................................................ RM-54
Figure 28 . Update Protocols Dialog........................................................... RM-55
Figure 29 . Creating a JVM Group.............................................................. RM-55
Figure 30 . Assigning Agents to a JVM Group........................................... RM-56
xiii



   

xiv
Figure 31 . Agency Properties Dialog......................................................... RM-57
Figure 32 . Agency Viewer ......................................................................... RM-59
Figure 33 . Message History Dialog............................................................ RM-62
Figure 34 . Agent Status Dialog .................................................................. RM-62
Figure 35 . Icon Dialog ............................................................................... RM-65
Figure 36 . The Agent Manager .................................................................. RM-67
Figure 37 . Agent Properties Dialog............................................................ RM-70
Figure 38 . Icon Dialog ............................................................................... RM-71
Figure 39 . Agencies Dialog........................................................................ RM-71
Figure 40 . Ontologies Dialog ..................................................................... RM-72
Figure 41 . Communications Dialog ........................................................... RM-73
Figure 42 . File Dialog ................................................................................ RM-75
Figure 43 . The Agent Engine Options Dialog............................................ RM-76
Figure 44 . Engine Console ......................................................................... RM-77
Figure 45 . Action Editor............................................................................. RM-80
Figure 46 . Commitment Editor .................................................................. RM-85
Figure 47 . Parameters Dialog..................................................................... RM-88
Figure 48 . Time Dialog .............................................................................. RM-90
Figure 49 . PAC Editor................................................................................ RM-94
Figure 50 . Import Dialog............................................................................ RM-95
Figure 51 . Dialog for Handling Short Names ............................................ RM-97
Figure 52 . PAC Update Dialog .................................................................. RM-98
Figure 53 . PAC Instance Constructor Dialog........................................... RM-100
Figure 54 . Viewing PAC Instances .......................................................... RM-103
Figure 55 . Viewing Java Instances........................................................... RM-106
Figure 56 . Rule Editor LHS ..................................................................... RM-113
Figure 57 . New Variable Dialog .............................................................. RM-115
Figure 58 . KQML Message Binding Dialog............................................ RM-116
Figure 59 . Array Dialog ........................................................................... RM-117
Figure 60 . Defined Variable Dialog......................................................... RM-117
Figure 61 . Instances Dialog...................................................................... RM-118
Figure 62 . Rule Editor (RHS) .................................................................. RM-119
Figure 63 . New Object Dialog ................................................................. RM-121
Figure 64 . Return Variable Dialog........................................................... RM-122
Figure 65 . Rule Properties Dialog............................................................ RM-123
Figure 66 . String Value Dialog ................................................................ RM-124
Figure 67 . Direct Method Dialog ............................................................. RM-125
Figure 68 . Return Variable Name Dialog ................................................ RM-126
Figure 69 . Predicate Methods in the Defined Variable Dialog ................ RM-127
Figure 70 . The New Object Dialog .......................................................... RM-129



   
Figure 71 . The Protocol Manager ............................................................ RM-130
Figure 72 . Protocol Properties Dialog...................................................... RM-132
Figure 73 . State Diagram ......................................................................... RM-135
Figure 74 . State Properties Dialog ........................................................... RM-136
Figure 75 . Transition Properties Dialog................................................... RM-137
Figure 76 . State Table Dialog .................................................................. RM-139
Figure 77 . Roles Dialog ........................................................................... RM-140
Figure 78 . Role Editor .............................................................................. RM-143
Figure 79 . Role Properties Dialog............................................................ RM-144
Figure 80 . Assign Agent Dialog............................................................... RM-145
Figure 81 . Agent Update Dialog .............................................................. RM-146
Figure 1 . Action Editor............................................................................. RM-150
Figure 2 . Commitment Editor .................................................................. RM-154
Figure 3 . Parameters Dialog..................................................................... RM-157
Figure 4 . Time Dialog .............................................................................. RM-159
Figure 5 . PAC Editor................................................................................ RM-163
Figure 6 . Import Dialog............................................................................ RM-164
Figure 7 . PAC Update Dialog .................................................................. RM-166
Figure 8 . PAC Instance Constructor Dialog............................................. RM-168
Figure 9 . Viewing PAC Instances ............................................................ RM-171
Figure 10 . Viewing Java Instances........................................................... RM-174
Figure 11 . Rule Editor LHS ..................................................................... RM-182
Figure 12 . New Variable Dialog .............................................................. RM-184
Figure 13 . KQML Message Binding Dialog............................................ RM-184
Figure 14 . Array Dialog ........................................................................... RM-185
Figure 15 . Defined Variable Dialog......................................................... RM-186
Figure 16 . Instances Dialog...................................................................... RM-187
Figure 17 . Rule Editor (RHS) .................................................................. RM-188
Figure 18 . New Object Dialog ................................................................. RM-190
Figure 19 . Return Variable Dialog........................................................... RM-191
Figure 20 . Rule Properties Dialog............................................................ RM-192
Figure 21 . String Value Dialog ................................................................ RM-193
Figure 22 . Direct Method Dialog ............................................................. RM-194
Figure 23 . Predicate Methods in the Defined Variable Dialog ................ RM-195
Figure 24 . The New Object Dialog .......................................................... RM-197
Figure 25 . The Protocol Manager ............................................................ RM-199
Figure 26 . Protocol Properties Dialog...................................................... RM-201
Figure 27 . State Diagram ......................................................................... RM-204
Figure 28 . State Properties Dialog ........................................................... RM-205
Figure 29 . Transition Properties Dialog................................................... RM-206
xv



   

xv
Figure 30 . State Table Dialog .................................................................. RM-208
Figure 31 . Roles Dialog ........................................................................... RM-209
Figure 32 . Role Editor .............................................................................. RM-212
Figure 33 . Role Properties Dialog............................................................ RM-213
Figure 34 . Assign Agent Dialog............................................................... RM-214
Figure 35 . Agent Update Dialog .............................................................. RM-215
Figure 36 . Input Dialog ............................................................................ RM-219
Figure 37 . Output Dialog ......................................................................... RM-219
Figure 38 . The Console ............................................................................ RM-220
Figure 39 . Build HelloWorldFrame Rule................................................. RM-233
Figure 40 . Print Greeting Rule ................................................................. RM-234
Figure 41 . BuyerFrame PAC Buyer......................................................... RM-237
Figure 42 . SellerFrame PACs................................................................... RM-238
Figure 43 . Java Code Segment................................................................. RM-239
Figure 44 . Java Code Segment................................................................. RM-240
Figure 45 . Build BuyerFrame Rule .......................................................... RM-245
Figure 46 . Add Product Rule.................................................................... RM-246
Figure 47 . BuyerFrame PAC.................................................................... RM-247
Figure 48 . Start Control Panel Rule ......................................................... RM-247
Figure 49 . Receive Message from Control Panel Rule ............................ RM-248
Figure 50 . BuyerFrame PAC.................................................................... RM-249
Figure 51 . Receive Message from Store Agent Rule ............................... RM-250
Figure 52 . BuyerFrame PAC.................................................................... RM-250
Figure 53 . Agent Engine Options............................................................. RM-253
Figure 54 . Agent Engine Options............................................................. RM-254
Figure 55 . Agent Engine Options............................................................. RM-256
Figure 56 . Run-Time Output (Verbose Option)....................................... RM-257
Figure 57 . Run-Time Output (Changed Beliefs)...................................... RM-257
Figure 58 . Agent’s Beliefs at End of Cycle ............................................. RM-258
Figure 59 . Agent Engine Options............................................................. RM-259
Figure 60 . Agent Engine Options............................................................. RM-260
Figure 61 . Agent Engine Options............................................................. RM-261
Figure 62 . Agent Engine Command Line Options................................... RM-264
Figure 63 . Engine Console ....................................................................... RM-265
Figure 64 . Save File Dialog...................................................................... RM-267
Figure 65 . Multi-Agent Engine Console .................................................. RM-271
Figure 66 . Built-In Input Dialog .............................................................. RM-275
Figure 67 . Error Dialog ............................................................................ RM-275
Figure 68 . Bind Example ......................................................................... RM-302
Figure 69 . Example Use of OR ................................................................ RM-307
i



   
Figure 70 . Another Example of OR Usage .............................................. RM-308
Figure 71 . Another Example Use of OR .................................................. RM-309
Figure 72 . An Incorrect Example ............................................................. RM-310
Figure 73 . Example Mental Model .......................................................... RM-311
Figure 74 . Example Rule 1....................................................................... RM-312
Figure 75 . Example Rule 2....................................................................... RM-312
Figure 76 . Example Rule 3....................................................................... RM-312
Figure 77 . Rule 4 with a Bad Pattern ....................................................... RM-313
Figure 78 . Example Rule 5....................................................................... RM-314
Figure 79 . Vacuously True Quantified Patterns....................................... RM-315
Figure 80 . Ensuring Rule Activation........................................................ RM-316
Figure 81 . Example 1. More on Binding and Existentials ....................... RM-317
Figure 82 . Rule 5 - the Final Example ..................................................... RM-318
xvii



   

xv
iii



LIST OF TABLES

Table 1. AgentEngine Command Line Options .......................................RM-262
Table 2. File Menu Keyboard Equivalents ...............................................RM-268
Table 3. Edit Menu Keyboard Equivalents ...............................................RM-268
Table 4. File Menu Keyboard Equivalents ...............................................RM-269
xix



xx



1 – 1
C h a p t e r 1

Agent Construction Tools

Chapter Overview

You can find the following information 
in this chapter:

• Overview of the Toolkit
• Project Manager
• Ontology Manager
• Agency Manager
• Agent Manager
• Protocol Manager



Chapter 1: Agent Construction Tools
A. Overview of the Toolkit
The AgentBuilder toolkit is designed to provide the agent software 
developer with an integrated environment for quickly and easily 
constructing intelligent agents.

The construction tools are divided into four major categories.  They 
are described in detail in the following sections. Figure 1 illustrates 
the tools in the AgentBuilder Toolkit. 
Note that not all tools are available in AgentBuilder Lite. For example, the 
Agency Viewer tools and the Protocol Editor are not a part of the Lite prod-
uct. 

Important Note about Version 1.4

Java Version 1.4 introduced several changes that may impact AgentBuilder 
users. In particular, agent names can no longer have embedded blank char-
acters. For example, “Buyer Seller” is no longer a valid legal name. Instead, 
use something like “BuyerSeller” or Buyer_Seller” for the agent name. If 
you have constructed agents with embedded blank characters in the agent 
name, you will have to rename them before using them with version 1.4 of 
AgentBuilder. 

Java Version 1.4 also has problems with user names with embedded blanks. 
If your user name is, for example, “John Doe” then running the Agency 
Viewer will generate an error. This will likely be a problem only with Win-
dows users. Please see the ReadMe file that came with the distribution for a 
solution for this problem.

Caution! Some of the examples in this document may have embedded 
blank characters in agent names. This will be corrected in future revisions 
to this document. 
1 – 2



Chapter 1: Agent Construction Tools
AgentBuilder

Project Manager

Ontology Manager
Concept Mapper
Object Modeler

Agency Manager
Agency Viewer

Agent Manager
Action Editor
Commitment Editor
PAC Editor
Rule Editor

Toolkit

Role Editor

Protocol Manager
Protocol Editor

Figure 1. The AgentBuilder Toolkit
1 – 3



Chapter 1: Agent Construction Tools
Tool Introduction

User Files
Each user is provided a directory where all of their files and direc-
tories are stored. The location of the user’s directory is system 
dependent. On UNIX systems the default location for the user's 
AgentBuilder directory is user-home-dir/.AgentBuilder (e.g., /
home/flintstone/.AgentBuilder).  On Windows systems the default 
location is drive:/Program Files/AgentBuilderLite1.4/users/user-
name (e.g., C:/Program Files/AgentBuilderLite1.4/users/flint-
stone). AgentBuilder stores the user’s properties file, the error log, 
and directories for RADL files, generated classes, and the reposi-
tory in the user’s AgentBuilder directory. With the exception of the 
properties files, the locations of the user’s files and directories can 
be modified using the Project Manager’s Options dialog.

The user’s properties file describes the location of all user files and 
directories, the user’s identity, and appearance preferences. The 
error log contains any errors generated by any of the AgentBuilder 
tools. The RADL directory contains agent definitions; the gener-
ated classes directory contains classes that have been generated for 
a particular agent; the repository contains the data for defined 
ontologies, projects, agencies, and agents.

The structure of the repository must not be modified. The reposi-
tory contains separate directories for storing information about 
agencies, agents, ontologies, projects, protocols and the class table.  
Each directory is labeled information-typeStore, where informa-
tion-type is used to indicate the type of information stored in the 
directory. For example, the agentStore contains information about 
all agents that have been defined by the user. Each time you select 
the Save menu item under the File menu, the respective store direc-
tory contents are updated.
1 – 4



Chapter 1: Agent Construction Tools
Performing a Save operation in any tool that manipulates agents 
has special implications. A Save operation that updates an agent 
causes an update in any AgentBuilder tool that has the same agent 
loaded. This feature is needed because the agent tools are inter-
dependent. This means you can modify an agent’s name in the 
Agent Manager, and then have the project tree automatically 
refreshed based on the modified agent. This allows you to have any 
of the agent tools open simultaneously. For example, you can have 
the Rule Editor open while defining actions, commitments, and 
templates. When you save this information, the Rule Editor will 
automatically update itself to display the newly created actions, 
commitments, and templates. This frees the user from having to 
manually update the individual agent tools.

Common Interface Features
The various AgentBuilder tools share a number of common inter-
face features. The following paragraphs describe common interface 
features of AgentBuilder. We use the Project Manager as an exam-
ple. The Project Manager is shown in Figure 2.

Windows menu 
Each AgentBuilder tool includes a Windows menu. The contents of 
the Windows menu indicate which AgentBuilder tools are visible. 
The Windows menu is managed with a custom window manager. 
As tools are opened and closed, the Windows menu is dynamically 
updated. Selecting a menu item in the Windows menu brings the 
selected tool to the front. The current implementation limits the 
selection of windows to windows that are not iconified.

Help Menus 
Each AgentBuilder tool contains an identical Help menu. Each 
Help menu contains the following menu items:
1 – 5



Chapter 1: Agent Construction Tools
• About 
• Index 
• Search 
• Tutorial 
• About AgentBuilder 
• AgentBuilder Home Page 

The About menu item displays information about the currently 
selected tool. The Index menu item provides an index to the help 
system. The Search menu item allows you to search the help sys-
tem for a specific topic. The Tutorial menu item displays an on-line 
tutorial with information for using the AgentBuilder toolkit. The 
About AgentBuilder menu item brings up a dialog displaying gen-
eral information about AgentBuilder. The AgentBuilder Home 
Page menu item displays the home page for the AgentBuilder 

Figure 2. AgentBuilder Project Manger
1 – 6



Chapter 1: Agent Construction Tools
product. With the exception of the About AgentBuilder menu 
item, all other menu items utilize your default web browser to dis-
play the Help pages.

Figure 3 below shows the Help Index for the AgentBuilder tools.  
The help system is organized as a series of HTML pages. You can 
navigate the help system using familiar browser controls. .

Tools Menu 
The Tools menu can be found in the Project Manager, Ontology 
Manager, Agent Manager, Agency Manager and Protocol Manager. 
Unlike the Help menu, the contents of the Tools menu is dependent 

Figure 3. AgentBuilder Help Viewer
1 – 7



Chapter 1: Agent Construction Tools
on the AgentBuilder tool selected. For the Project Manager, the 
Tools menu provides a menu item for selecting the Agent Engine. 
The Ontology Manager contains menu items for its tools as does 
the Agent Manager, Agency Manager and the Protocol Manager. 

Tree Paradigm 
The tree paradigm is used throughout the toolkit. Traditionally, the 
tree paradigm is used for displaying the contents of file systems. In 
the AgentBuilder toolkit, the tree paradigm has been extended to 
describe a containment hierarchy. In the Project Manager, the tree 
paradigm shows that projects contain agencies, which in turn, con-
tain agents. In the Attributes dialog for the PAC Editor, the tree par-
adigm is used to show the contents of complex attributes that 
contain simple attributes, and possibly, other complex attributes.

Building Complex Expressions 
AgentBuilder provides a very powerful agent construction mecha-
nism that minimizes the amount of typing you must do. The actual 
agent programming language is generated automatically by the 
AgentBuilder tools. The objects and attributes you define in the 
analysis phase of your project are reused by graphical editors. 
These graphical editors are used to construct complex expressions 
that give your agents useful behaviors. 

AgentBuilder uses an accumulator paradigm for constructing com-
plex patterns and expressions. Several editors use an accumulator 
text field to accumulate pattern components as you enter them, and 
a pattern list to display the completed patterns (here “patterns” is 
used in the generic sense and is not restricted to patterns on the left-
hand side of a rule).  There is usually a row of buttons or pull-down 
menus above an accumulator text field; these provide the pattern 
components that you select for insertion into the accumulator.  The 
pattern list for the completed patterns is usually situated below the 
1 – 8



Chapter 1: Agent Construction Tools
accumulator text field.  Figure 4 shows a portion of the Condition 
Pattern panel that is part of the Rule Editor used in AgentBuilder. It 
provides a good example of the use of the accumulator concept. 

The normal sequence of operations is to specify the components of 
the pattern (operators, variables, constant values, etc.) by using the 
row of buttons above the accumulator, then click on the Add button 
to the right of the accumulator text field.  Clicking on Add will 
move the pattern from the accumulator to the associated pattern list. 
Clicking on the New button will clear the accumulator text field. 
(The New button does not clear the Pattern List).

In general, pattern components should be specified in a left-to-right 
order.  One important exception to this general rule is the ordering 

Figure 4. Accumulator Building Complex Patterns
1 – 9



Chapter 1: Agent Construction Tools
for message conditions and mental conditions in the Rule Editor.  
To build these conditions you should first specify the conditional 
operator (e.g., EQUALS, <=, etc.) then specify the operands in left-to-
right order.  For example, to build the message condition:

    (%message.performative EQUALS achieve)

you should first select EQUALS from the Operators pull-down 
menu.  This will fill the accumulator with the template:

    (<> EQUALS <>)

This template shows the operator and the <> slot markers which 
indicate that you need to select two operands. In this case, you 
would select %message.performative from the Defined Variable dia-
log (or first you may need to create the variable using the New Vari-
able dialog) then select achieve from the Values dialog.  As you 
select the operands the slot markers in the template will be filled in 
with the operands from left to right.  Finally, click on Add to trans-
fer the pattern from the accumulator to the message condition list 
below the accumulator.

After the patterns are placed in the pattern list, you can change the 
ordering of the patterns by using the Up and Down buttons.  Click-
ing on a pattern in the pattern list will highlight the pattern and copy 
it into the accumulator for modification. Clicking on the Up or 
Down button will move the pattern up or down one slot in the list.  
You can delete a highlighted pattern by clicking on the Delete but-
ton.

More Information
You can find more detailed information about AgentBuilder in the 
Appendices to this volume. AgentBuilder intrinsics are described in 
Appendix A, “Intrinsics” on page 287. A detailed description and 
grammar for RADL is provided in Appendix B,“Runtime Agent 
1 – 10



Chapter 1: Agent Construction Tools
Definition Language” on page 293. Operators and Patterns sup-
ported by the tools are described in Appendix C, “Operators and 
Patterns” on page 301. 
1 – 11



Chapter 1: Agent Construction Tools
B. Project Manager
The Project Manager is the high-level tool used to create projects, 
agencies, and agents. Agencies can be created using the Agency 
Manager, and agents can be created using the Agent Manager. The 
Project Manager provides an overall view of the development pro-
cess. The Project Manager allows you to easily see all of the 
projects, agencies and agents that you have created. The Project 
Manager is shown in Figure 5. 

Overview
The File menu allows you to create new projects, agencies, and 
agents. The File menu is also used to shut down the program. Using 
the Edit menu, you can delete a selected node in the project tree, 
cut, copy and paste agents, and view or edit AgentBuilder proper-
ties. The Tools menu provides access to the Agent Engine. The 

Figure 5. The Project Manager
1 – 12



Chapter 1: Agent Construction Tools
Windows menu lets you switch among the various open Agent-
Builder tools. The Help menu provides access to the AgentBuilder 
help system.

The project tree allows you to view your repository. The top-level 
view shows the project folders. Each project folder can contain 
multiple agencies which, in turn, can contain multiple agents.

The description area provides a textual description of the project, 
agency, or agent in the project tree. To see a description, select a 
node in the project tree, and the description area’s contents will 
show a description of the selected project, agency, or agent.

Operation

Using the Project Tree
The project tree is based on a tree structure commonly used to dis-
play file systems and the hierarchical relationships between files 
and directories. Tree nodes that contain children can be opened, or 
expanded, by double-clicking on the node’s label, or by clicking on 
its expand icon to the left of the label. Similarly, a tree nodes that 
has been expanded can be collapsed by double-clicking on its label 
or by clicking on its collapse icon to the left of the label.

The Agent Manager tool can be opened in the same manner as the 
Agency Manager. You can select the agent and then click on the 
Agents tab, or right-click on the agent and select the Edit menu 
item. You can also open the Agent Manager with no agent loaded, 
simply click on the agents tab without having selected an agent.

The project tree also provides context-sensitive pop-up menus. The 
pop-up menus are activated by using the right mouse button. Right-
clicking on a project will display the project’s pop-up menu. The 
same can be done with agencies and agents. Right-clicking on an 
1 – 13



Chapter 1: Agent Construction Tools
empty area within the project tree will display the project tree’s 
pop-up menu.

Creating a New Project
Projects can be created in two ways. You can select New from the 
File menu, or you can right click on the Projects folder, then select 
New Project from the pop-up menu. In either case, the Project 
Properties dialog will be displayed. You must supply a name and 
click on the OK button to create the new project. 

Creating a New Agency
Agencies can be created in two ways. The first way is to select a 
project folder in the project tree and then select New from the File 
menu. The other method used to create a new agency is to right 
click on a project folder, then select New Agency from the pop-up 
menu. You must supply a name and click on the OK button to cre-
ate the new agency.

Creating a New Agent
Agents can be created in two ways. The first way is to select an 
agency folder in the project tree and then select New from the File 
menu. The other method used to create a new agent is to right-click 
on an agency folder and then select New Agent from the pop-up 
menu. You must supply a name and click on the OK button to cre-
ate the new agent.

Cutting, Copying and Pasting an Agent
Agents are the only nodes in the project tree that can be cut, copied, 
or pasted. There are two ways to use these clipboard functions on 
an agent. The first way is to use the Edit menu's Cut, Copy and 
Paste menu items. The other method is to use the agent's pop-up 
menus for Cut and Copy, and the agency's pop-up menu for Paste. 
1 – 14



Chapter 1: Agent Construction Tools
Whichever method is used, an agent must first be selected before a 
cut or copy operation can be performed. For the paste operation, an 
agency must be selected. Invalid selections will be ignored. Once 
an agent has been pasted into an agency, the newly pasted agent 
will be assigned the current user's name and the current date and 
time. If the agency being pasted into already contains the name of 
the agent being pasted, the agent to be pasted will recursively have 
CopyOf prepended to its name.

Modifying Project, Agency and Agent Properties
To modify the properties of a project, agency, or agent, right-click 
on the node in the project tree. The pop-up menu for the selected 
node will contain a Properties menu item. Selecting the Proper-
ties menu item will display a properties dialog for the selected 
node. The properties dialog for projects and agencies allows you to 
modify the name and description. The properties dialog for an 
agency is more complex. You can modify an agency's name, 
description, author, company, and communications. The agent 
properties dialog is similar to the Agency Properties dialog, except 
that you can also modify the agent's icon, engine cycle time, and 
agencies. In each of the properties dialogs, you must select the OK 
button in order for the changes to take effect. Selecting the Cancel 
button or closing the window will discard any changes.

Deleting Projects, Agencies and Agents
Projects, agencies, and agents can be deleted in two different ways. 
The user can first select the tree node to be deleted, then select 
Delete from the Edit menu. The other way in which tree nodes can 
be deleted is by right-clicking on a tree node, then selecting Delete 
from the pop-up menu.
1 – 15



Chapter 1: Agent Construction Tools
Editing AgentBuilder Properties
To edit user preferences, the AgentBuilder Options dialog is 
accessed through the Edit menu’s Options menu item. The Agent-
Builder Options dialog allows you to view and edit various prefer-
ences such as:

• Name
• Email address
• Company name
• Directory locations
• Error logging
• “Look and Feel”
• Font size
• Background color
• Foreground color
• KQMLConverter class for Sockets
To edit the user's name, email or company name, select the User 
Info tab in the AgentBuilder Options Dialog. Figure 6 shows the 
AgentBuilder Options Dialog with the User Info tab selected. The 
User Info panel is made up of text fields so that the user can easily 
change the contents of any or all fields. 

To modify the user's directories and error log location, select the 
Directories tab. Figure 7 shows the AgentBuilder Options Dialog 
with the Directories tab selected. The Directories tab contains a 
table for viewing and modifying the user's directories. 

To modify a directory entry in the table, first select the directory to 
be modified. Then, select the Browse button. Selecting the Browse 
button will bring up a Directory dialog, as shown in Figure 8. 

The Directory dialog is similar to a file selection dialog, except that 
it only allows you to view and select directories. The Directory dia-
1 – 16



Chapter 1: Agent Construction Tools
log has several features worth noting. At the top of the dialog, there 
is a combo box that displays the current directory. The combo box 
allows you to go up in the directory hierarchy. The dialog also con-
tains icons for going up to the next directory, returning to the home 
directory, and creating a new directory, respectively. In the center 
of the dialog is a pane for displaying the contents of the current 
directory. In this pane, you can double click directories to open 
them. At the bottom of the dialog, there is and editable text field 
where you can type the name of the directory. When you find the 

Figure 6. User Preference Dialog

Figure 7. Preferences Dialog Showing Directories
1 – 17



Chapter 1: Agent Construction Tools
desired directory, you can select the directory in the directory pane 
and then click on the Open button. If no directory is selected, the 
current directory becomes the selected directory. The selected 
directory will be displayed in the directories table.

You can choose to have error logging turned on or off by selecting 
the checkbox next to the Error Log Location label below the directo-
ries table. If error logging is turned on, you must also specify the 
error log file that will be used. You can specify the error log loca-
tion by typing in the text field, or by clicking on the Browse button. 
Clicking on the Browse button will display the standard File dia-
log.

The general appearance of the AgentBuilder toolkit can be changed 
in the Appearance panel. Figure 9 shows the AgentBuilder Options 
dialog with the Appearance tab selected. The Appearance panel is 
divided into three sub panels. The top panel is the Look and Feel 

Figure 8. Directory Dialog
1 – 18



Chapter 1: Agent Construction Tools
panel. The Look and Feel panel contains three radio buttons for 
selecting the Metal, Windows, and CDE/Motif look and feel. The 
Metal look and feel is the default look and feel. Due to licensing 
restrictions, only Microsoft Windows users can select the Windows 
look and feel. Selecting one of the radio buttons will immediately 
change the look and feel in all open windows. The Font Size panel 
allows you to change the default size of the fonts used in the appli-
cation by simply typing in a font size in the text field. 

The background and foreground colors are shown as the colors of 
their respective buttons. The background and foreground color are 
modified by selecting the corresponding Colors button. Selecting 
the Colors button will display the Color Dialog, shown in Figure 
10. The Color Dialog contains three sliders for setting the red, green 
and blue values of the background or foreground colors. You will 
also find, located on the right of the sliders, a box whose color is set 
to the current RGB value. Once the desired color has been deter-
mined, click on the OK button to set the color for the background or 
foreground color. 

Figure 9. Preference Panel for Setting Appearances
1 – 19



Chapter 1: Agent Construction Tools
If you modify any of the preferences, you must select the OK button 
before any of the changes will take effect. Currently, font size and 
color modifications only take effect the next time the tool is started. 
Selecting the Cancel button or closing the window will discard any 
preference modifications.

The Sockets panel allows you to specify the class to handle the 
conversion of KQML messages to and from bytes. Figure 11 shows 
the AgentBuilder Options dialog with the Sockets tab selected. 
By default, the class com.reticular.agentBuilder.agent.per-
ception.DefaultKqmlConverter will be used whenever you 
specify that AgentBuilder agents communicate using TCP/IP sock-
ets.

Launching AgentBuilder Tools
Another function performed by the Agency Manager (in addition to 
providing a graphical display of your projects, agencies and agents) 
is providing access to the varous tools in AgentBuilder. These tools 
include the Agency Manager, Agent Manager, Ontology Man-

Figure 10. Color Preference Dialog
1 – 20



Chapter 1: Agent Construction Tools
ager, Protocol Manager, and Agent Engine. The following para-
graphs describe several methods for opening each of these tools. 

The Agency Manager can be displayed in three different ways. You 
can select an agency from the Project tree and then click on the 
Agencies tab. You can also, right-click on the agency and select 
the Edit menu item from the pop-up menu item. The third way to 
display the Agency Manager is to click on the Agencies tab without 
selecting any agency, the Agency Manager will be displayed with 
no agency loaded. 

The Agent Engine tool can be opened in two different ways. You 
can either select the agent and then select the Tools  Agent 
Engine menu item, or by simply right-clicking an agent and select-
ing the Run menu item from the pop-up menu. The Agent Engine 
cannot be run without first selecting an agent. To run an agency, 
right-click on the agency and select the Run menu item from the 
pop-up menu. This will launch the EngineLauncher for the agency. 
It will use the agency JVM groups if it exists (See “Creating a JVM 
Group” for more info).

Figure 11. TCP/IP Socket Options
1 – 21



Chapter 1: Agent Construction Tools
The Agent Manager tool can be opened in the same manner as the 
Agency Manager. You can select the agent and then click on the 
Agents tab, or right-click on the agent and select the Edit menu 
item. You can also open the Agent Manager with no agent loaded; 
simply click on the agents tab without having selected an agent.

There is only one way to open the Ontology Manager and Protocol 
Manager tools. You must select the Ontologies or Protocols tab 
from the Project Manager.

Switching AgentBuilder Windows
The Windows menu is a dynamic menu that provides a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tools are open. To switch to the 
desired tool, selects the tool from the Windows menu. The selected 
tool will then be brought to the front on the display.

Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool.  The Index menu item will display an index to the help 
system's contents.  The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit.  The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information.  The AgentBuilder Home 
Page menu item will display the home page for the AgentBuilder 
product. 

Exiting AgentBuilder
Because the Project Manager is the top-level tool for the Agent-
Builder toolkit, the Project Manager can only be exited, not closed. 
To exit the system, select Exit from the File menu.
1 – 22



Chapter 1: Agent Construction Tools
C. Ontology Manager

Ontology Manager
The Ontology Manager is the tool (shown in Figure 12) that allows 
you to implement a top-level design of an agent prior to beginning 
coding or rule definition.  Using this tool, you can create new ontol-
ogies or modify existing ontologies for the agent under construc-
tion.  There are two main tools to help you in designing agents and 
agent-based systems:  the concept mapper and the object modeler.  
Both of these tools along with the ontology manager tool are 
described below.

Overview
The Ontology Manager has five menus: File, Edit, Tools, Win-
dows, and Help. The File menu is used to create new ontologies 
and shut down AgentBuilder. The Edit menu is used to Cut, Copy, 
Paste and Delete an ontology. You can use the Tools menu to 
select one of the two design tools (i.e. Concept Mapper or Object 
Modeler). The Windows menu allows you to quickly and easily 
switch between the various open AgentBuilder tools. The Help 
menu gives you access to the AgentBuilder help system. The Ontol-
ogy Manager is shown in Figure 12.

The ontology tree view allows you to view user-defined and system 
ontologies.  You can create and view any number of ontologies.  
Typically, the system ontologies in the ontology tree are displayed 
in red. This implies that they are read-only and cannot be altered. A 
user's personal ontologies are displayed in black.  When an ontol-
ogy is selected in the left panel, the right panel displays general 
information about the ontology and includes a short textual descrip-
tion of the ontology as well as information about where the ontol-
ogy is located.  Note that the divider between the ontology tree 
1 – 23



Chapter 1: Agent Construction Tools
structure and the properties window can be moved horizontally to 
provide more viewing space for the ontologies.

Operation

Using the Ontology Tree 
The Ontology Manager uses the same tree structures found in other 
AgentBuilder tools.  The ontology manager has three levels in its 
tree structure. The highest level is the Ontologies level, which con-
tains repository folders, which in turn, contain the defined ontolo-
gies. The repository folders are represented in the tree by a folder 
icon. The ontologies are represented by a book icon.  Any of the 
ontologies that are read-only are displayed in red text.

Figure 12. The Ontology Manager
1 – 24



Chapter 1: Agent Construction Tools
Creating a New Ontology
A new ontology can be added to your user's folder by selecting the 
user's ontology folder and then either selecting the New menu item 
under File or right clicking on the mouse.  This will bring up the 
dialog shown in Figure 13. The properties of the ontology can be 
entered in this dialog box. 

Cutting, Copying and Pasting an Ontology 
Ontologies can be cut, copied, or pasted. There are two ways to use 
the clipboard functions for an ontology. The first way is to use the 
Edit menu's Cut, Copy and Paste menu items. The other method is 
to use the ontology's pop-up menus for cut and copy, and the repos-
itory folder's pop-up menu for paste. Whichever method is used, an 

Figure 13. Ontology Properties
1 – 25



Chapter 1: Agent Construction Tools
ontology must be selected before a cut or copy operation. For the 
paste operation, a user or system repository folder must be selected. 
Invalid selections will be ignored. If the folder being pasted into 
already contains the name of the ontology being pasted, the ontol-
ogy to be pasted will recursively have CopyOf prepended to its 
name.

Modifying Ontology Properties 
The general ontology properties can be modified by right-clicking 
on the appropriate ontology in the tree structure and selecting the 
Properties… item in the pop-up menu (by right-clicking on the 
selected ontology).  

Deleting Ontologies 
To delete an ontology from the ontology tree structure, simply 
select the desired ontology and choose Delete from the Edit menu 
(or from the pop-up menu by right-clicking on the selected ontol-
ogy).  This will prompt AgentBuilder to display a dialog asking if 
you are sure you want to delete this ontology. If you select Yes the 
ontology will be deleted.  If you decide that you do not want to 
delete the ontology, simply select either No or Cancel and the dele-
tion operation will not be performed.

Launching Ontology Tools 
You can launch either the Concept Mapping tool or the Object 
Modeler tool.  It is necessary to first select the desired ontology 
before launching either of these tools.  If you launch the Concept 
Mapper or Object Modeler without first selecting an ontology 
AgentBuilder will remind you by displaying a dialog asking you to 
select an ontology.  
1 – 26



Chapter 1: Agent Construction Tools
Switching AgentBuilder Windows
To switch between different AgentBuilder windows, select the 
desired window in the Windows menu.  This will bring the selected 
open window to the foreground.

Accessing Help 
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool. The Index menu item will display an index of the help 
system's contents. The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit. The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information. The AgentBuilder Home Page 
menu item will display the home page for the AgentBuilder prod-
uct.

Exiting AgentBuilder 
To exit from AgentBuilder, select the Exit from the File menu.  
AgentBuilder will then display a dialog asking whether you are 
sure you want to exit.  If so, then click on the Yes button; if you do 
not wish to exit, click on the No button.

Concept Mapper
The Concept Mapper tool is used to organize and structure an 
ontology. The Concept Mapper provides a drawing canvas for 
graphically defining concepts and relationships between concepts.  
These concepts can then be mapped automatically into the Object 
Modeling Tool.  Note that you are not required to use the Concept 
Mapper.  You can work directly with the Object Modeler if desired.

Overview
The Concept Mapper contains a menu bar with five items: File, 
Edit, Map, Windows, and Help. The File menu allows you to open 
1 – 27



Chapter 1: Agent Construction Tools
ontologies and save the current ontology. You can also print the 
ontology to obtain a hard copy of the concept information. You can 
also close the Concept Mapper and shut down AgentBuilder using 
the File menu. The Edit menu allows you to Cut, Copy, Paste or 
Delete a selected concept or link. The Map menu allows you to 
modify the current concept map by adding new concepts or links. 
The Map menu also provides menu items for clearing the whole 
canvas or refreshing the map. The Windows menu allows you to 
quickly and easily switch between the various open AgentBuilder 
tools. The Help menu gives you access to the AgentBuilder help 
system. A conceptual map drawn using the Concept Mapper is 
shown in Figure 14.

The central feature of the Concept Mapper is the canvas you use to 
construct an arbitrarily complex representation of concepts and 
relations between the concepts. You are free to construct as simple 
or complex a concept map as desired.  In addition, the concept 
properties allow you to create an object that will be used in the 
Object Modeler.  It is easy to rearrange concepts to simplify the 
structure and minimize overlap of links.  Three types of links are 
supported: undirect, direct, and bidirect.  Each link can have a label 
attached to it that represents the type of relationship between two 
connected concepts.

Operation

Creating a New Concept
You can create a new concept by right-clicking on an unoccupied 
region of the canvas and selecting New Concept from the pop-up 
menu.  This will cause AgentBuilder to display a dialog where you 
can enter a name for the concept being represented as well as a 
description of the concept and any critical information that will be 
helpful.  Also, there is a selection box titled Make Class.  By click-
ing on this box, you can create an associated class that will appear 
1 – 28



Chapter 1: Agent Construction Tools
in the Object Modeler. Thus, you do not have to enter common 
information into both tools.  Clicking the OK button will create a 
new concept on the canvas. This concept is represented by an oval 
with the concept name located inside it. Note that the point on the 
canvas where you right-click is the location where the concept will 
be placed.  If you decide not to create this new concept, you can 
click on the Cancel button and the concept map will remain 
unchanged. You can also use the Map menu to create a New Con-
cept in a similar manner.

Figure 14. The Concept Mapper
1 – 29



Chapter 1: Agent Construction Tools
Cutting, Copying and Pasting a Concept 
Concepts can be cut, copied, or pasted. There are two ways to use 
the clipboard functions for a concept. The first way is to use the 
Edit menu's Cut, Copy and Paste menu items. The other method is 
to use the concept's pop-up menus for cut and copy, and the map's 
pop-up menu for paste. Whichever method is used, a concept must 
be selected before a cut or copy operation. If the map being pasted 
into already contains the name of the concept being pasted, the con-
cept to be pasted will recursively have CopyOf prepended to its 
name.

Creating a New Link 
You can create a new link by right-clicking on any unoccupied 
region of the canvas and selecting the hierarchical New Link menu 
item.  You can select between undirected, directed and bidirected 
links. You can select one of the link types from the Map  New 
Link hierarchical menu.  Once you have selected one of the link 
types, the cursor will change to a cross-hair and your can then click-
and-drag on the initial concept and join it to another desired con-
cept.  Note that for the undirected and bidirected cases, the order of 
connection does not matter.  However, for the directed case, you 
must connect them in the direction you wish the arrow to point (the 
second concept is defined by where you release the mouse button).

Moving an Existing Concept 
You can freely move a concept anywhere on the canvas.  Do this by 
clicking on the desired concept and dragging the concept to the new 
location.  Links will adjust themselves to maintain the connection 
with the relocated concept.

Moving Multiple Concepts
You are able to move multiple concepts at a time. First, you need to 
select the concepts you wish to move. To do this, hold the Control 
1 – 30



Chapter 1: Agent Construction Tools
key down and select the concepts with the mouse. Once you have a 
group of selected concepts, hold the Control key down and drag 
one of the selected concepts to a new location. You will notice that 
all the selected concepts will move in relation to the mouse cursor. 
To deselect the concepts, simply click on the canvas.

Deleting an Existing Concept
You can delete an existing concept by clicking on that concept (i.e., 
selecting it) and then right-clicking and selecting the Delete item 
from the pop-up menu.  Likewise, a selected concept can be deleted 
using the Delete item in the Edit menu.  Note that when a concept 
is deleted, all links to that concept are also deleted.

Deleting an Existing Link
You can delete an existing link either by selecting a link (turning it 
to a red color) and then right-clicking and selecting Delete from the 
pop-up menu or using the Delete menu item in the Edit menu.

Changing the Link Type of an Existing Link
You can change an existing link by selecting that link and right-
clicking to bring up a pop-up menu.  You can then changes the link 
type by selecting one of the types from the Link Type hierarchical 
menu. The link type can also be changed in the Link Properties dia-
log. 

Viewing and Altering the Properties of an Existing Concept
You can view and modify the name and description of an existing 
concept by right-clicking on the desired concept. You can then 
select the Properties item from the pop-up menu.  AgentBuilder 
will then display a dialog that will allow you to see and alter the 
name and description of the selected concept.  By clicking on the 
OK button, you can enter the changes. Clicking on the Cancel but-
ton will revert to the original unaltered properties. The Concept 
Properties Dialog is shown in Figure 15.
1 – 31



Chapter 1: Agent Construction Tools
Creating an Associated Class from an Existing Concept
You can create an associated class (that can be viewed inside the 
Object Modeler tool) by right-clicking on a concept and selecting 
the Properties item from the pop-up menu.  AgentBuilder will then 
display the Concept Properties dialog (see “Viewing and Altering 
the Properties of an Existing Concept” on page 31.).  To create the 
class, simply click the mouse button inside the box labeled Make 
Class and then press the OK button to confirm the change.  Agent-
Builder will then automatically create the class.  You can then view 
and modify the class inside the Object Modeler (see “Object Mod-
eler” on page 36).

Viewing and Altering the Properties of an Existing Link
You can view and modify the link label, description and type of a 
selected link by right-clicking on the selected (red) link.  Select the 
Properties item from the pop-up menu. AgentBuilder will then 
display a dialog that will allow you to see and alter the name and 
description of the selected link.  In addition, the link type can be 
modified here.  By clicking on the OK button, you can enter the 
changes. Clicking on the Cancel button will revert to the original 

Figure 15. The Concept Properties Dialog
1 – 32



Chapter 1: Agent Construction Tools
unaltered properties. The Link Properties dialog is shown in Figure 
16.

Saving a Concept Map
You can save a concept map by selecting Save under the File 
menu. You can then close the Concept Mapper and return to it at a 
later time.  The save action will save the concept and links as well 
as their locations relative to each other.

Saving the Concept Map to a File
The concept map can be saved to a text file by selecting File  
Generate Printable. Selecting this menu item will bring up a file 
dialog for saving a concept map to a file.  By default, the directory 
is set to the current working directory, and the filename is set to 
concept-map-name.txt. The text file that is generated will contain a 
text description of all of the concepts in the concept map. Currently, 
no information is printed about concept links. Figure 17 shows the 
contents of the DefaultOntology concept map.

Figure 16. Link Properties Dialog
1 – 33



Chapter 1: Agent Construction Tools
Clearing a Concept Map
If you wish to delete everything on the current concept map and 
start again, you can do so by selecting Clear under the Map menu 
or right-clicking on an unoccupied portion of the canvas and select-
ing Clear in the pop-up menu.  Note that this removes all concepts 
and links that have been entered. AgentBuilder will warn you by 
displaying a confirmation dialog window.  Select Yes if you wish 
to clear the current concept map or No if you decide not to clear the 
canvas.  Note that if you later decide you like the previous concept 
map and have not saved the current concept map since clearing it, 
you can close the Concept Mapper and not save the changes.  How-
ever, if you save after clearing the concept map, there is no way to 
revert to the previous concept map.

Figure 17. Concept Map Generate Printable Output
1 – 34



Chapter 1: Agent Construction Tools
Switching Windows 
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tools are open. To switch to the 
desired tool, select the tool from the Windows menu. The selected 
tool will then be displayed. 

Accessing Help 
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool. The Index menu item will display an index to the help 
system's contents. The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit. The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information. The AgentBuilder Home Page 
menu item will display the home page for the AgentBuilder prod-
uct.

Closing the Concept Mapper
You can close the Concept Mapper by selecting the Close item in 
the File menu.  If necessary, AgentBuilder will ask you whether 
you want to save your changes.  In selecting Yes, you will save all 
changes since the previous save.  Selecting No will revert to the 
concept map configuration last saved. 

Exiting AgentBuilder 
To exit AgentBuilder, select the Exit item from the File menu. 
AgentBuilder will then display a dialog asking whether you are 
sure you want to exit. If so, then click on Yes button; if you do not 
wish to exit, click on the No button.
1 – 35



Chapter 1: Agent Construction Tools
Object Modeler
The Object Modeler tool is used to describe an object model in an 
ontology. The Object Modeler provides a canvas where you draw 
figures representing classes and links representing the relationship 
between classes.  The icons in the Object Modeler represent classes 
that will be instantiated by the agent to store domain information or 
perform actions in the domain. The links are used to show the rela-
tionships between classes.  The classes defined in the object model 
can be mapped automatically into Java source files, which can then 
be compiled into Java class files (some source files may require 
editing, the Object Modeler cannot provide the code for user-
defined methods).  Note that all Project Accessory Classes (PACs) 
must first be defined in the Object Modeler before they can be 
imported into the PAC Editor (See “PAC Editor” on page 92).  The 
Object Modeler is used to define the data attributes and the APIs of 
all classes that will be used in the agent's mental model. Java class 
files can be directly imported into an object model, thus saving you 
the effort of specifying the API for classes that are already coded.

The Object Modeler uses the notation from the Unified Modeling 
Language (UML). While UML method defines a very rich set of 
notation for modeling large complex systems, this tool implements 
a subset of the complete notation. See the UML Resource Center at 
http://www.rational.com/uml for more information.

Overview
The Object Modeler contains a menu bar with five items: File, Edit, 
Map, Windows and Help. The File menu allows you to open previ-
ous object models as well as save the current models. The File 
menu also allows you to import class files and update the objects. 
You can also Print the object model to obtain a hard copy. The Edit 
menu allows you to Cut, Copy, Paste, and Delete the selected 
class or link. The Map menu allows you to modify the current 
1 – 36



Chapter 1: Agent Construction Tools
object model by adding new class or links, or to clear the entire 
drawing canvas. The Windows menu allows you to quickly and 
easily switch between the various open AgentBuilder tools. The 
Help menu gives you access to the AgentBuilder help system. Fig-
ure 18 illustrates a model constructed with the Object Modeler.

The main feature of the Object Modeler is the canvas on which you 
can construct an arbitrarily complex structure of classes and rela-
tions between classes.  Utilizing the menus discussed above as well 
as context-sensitive pop-up menus you can construct simple or 
complex object models as needed.  In addition, the tool allows you 
to edit a classes’ properties.  It is easy to rearrange classes to sim-

Figure 18. Object Modeler
1 – 37



Chapter 1: Agent Construction Tools
plify the structure and minimize overlap of links.  Three types of 
class links are supported: generalization, aggregation, and associa-
tion.  Each link has a different symbol that represents the type of 
relationship between the two connected classes.

Operation

Creating a New Class
You can create a new rectangular figure representing the new class 
by right-clicking on an unoccupied region of the canvas and select-
ing New Object from the pop-up menu. This will cause Agent-
Builder to display the dialog shown in Figure 19 in which you can 
enter a name for the class being represented, a description of the 
class, and method and attribute information.  From this dialog you 
also specify the methods and attributes of the class.  The methods 
are the API of the class.  It is important for you to specify all con-
structors that might be used.  It is only necessary to enter the 
attributes which you are going to read or write; private attributes 
that are not accessed need not be included.  If the type you desire 
for an attribute is not in the Types pull-down menu, you can enter 
the class in the combo-box text area and then press the Enter key 
on the keyboard after typing the class name. 

There are a couple of things to keep in mind when creating a new 
Class. A global class table keeps track of all classes in the ontolo-
gies. Therefore, all classes used in the object model need to specify 
their fully qualified class name in order to avoid ambiguity. Differ-
ent objects cannot use the same name, even if they exist in different 
ontologies. Any classes used as an attribute or parameter must 
either be a primitive, basic Java type, or defined in the same object 
model. The basic Java types supported are arrays, hashtables, enu-
meration, and objects. By default, all classes created in the Object 
Model will implement the Serializable and Cloneable interfaces. 
The tool automatically generates read/write routines for each 
1 – 38



Chapter 1: Agent Construction Tools
attribute. Each attribute specified must have read/write methods 
that follow the Java Bean convention. The Java Bean convention is 
specified more precisely in the Java literature and requires a “set” 
and “get” routine for each attribute. For example, if you specify an 
attribute named price, the tool will generate the methods setPrice 
and getPrice. 

Clicking the OK button will create a new rectangular figure on the 
canvas representing the new class. Note that the point where you 
right-click is where the figure will be drawn.  If you decide not to 
create this new class, you can press the Cancel button and the 

Figure 19. Class Properties Dialog
1 – 39



Chapter 1: Agent Construction Tools
object model will remain unchanged.  You can also use the Map 
menu in order to create a new class in an identical manner.

Cutting, Copying and Pasting a Class
Classes can be cut, copied, or pasted. There are two ways to use the 
clipboard functions for a class. The first way is to use the Edit 
menu's Cut, Copy and Paste menu items. The other method is to 
use the class's pop-up menus for cut and copy, and the map's pop-
up menu for paste. Whichever method is used, a class must be 
selected before a cut or copy operation. If the model being pasted 
into already contains the name of the class being pasted, the class to 
be pasted will recursively have CopyOf prepended to its name.

Viewing and Altering the Properties of an Existing Class
You can view and modify the name and description of an existing 
class by right-clicking on the desired class.  You can then select the 
Properties item from the pop-up menu.  AgentBuilder will then 
display a dialog which will allow you to see and alter the name and 
properties of the selected class.  By clicking on the OK button you 
can enter the changes; clicking on the Cancel button will revert to 
the original unaltered properties.

 Creating a New Link 
You can create a new link by right-clicking on any unoccupied 
region of the canvas and selecting between generalization, aggrega-
tion and binary association link types. Once again, this can also be 
initiated by selecting one of the link types from the Map menu. 

Associations. A group of classes with common structure and com-
mon semantics are associates of one another. For example, an asso-
ciation link could be Joe Smith works-at IBM. An association is 
something like, person works-at company. Associations are always 
bi-directional and there can be rolenames given for each direction. 
Also cardinality (UML calls this multiplicity) can be denoted as 
1 – 40



Chapter 1: Agent Construction Tools
well as a specific ordering of objects of a Class.

Aggregation (Whole-Part relationship). This relationship relates an 
assembly class to one component class. For example: Engine is-
part-of Car. The aggregation relationship is transitive and it is pos-
sible to use the aggregation relationship recursively.

Generalization (Inheritance). Generalization is a relationship 
between a class (superclass) and one or more refined versions of it 
(subclass) who share attributes and operations. These are denoted in 
the superclass from which the subclasses inherits. A subclass may 
override features defined in a superclass like methods of operations 
and values of attributes. In this way the subclass is an extension and 
a restriction of the superclass. A class can inherit from one other 
class (single inheritance) as well as from several other classes (mul-
tiple inheritance). It is mentioned that this can cause conflicts 
among attributes or methods with the same names that are defined 
in the different superclasses.
Once you have selected one of the link types, the cursor will change 
to a cross-hair and you can then click-and-drag on the initial class 
and join it to the other desired class.  Note that the order of connec-
tion does matter. The aggregation and generalization links are 
directed and need to be selected in the appropriate manner: For gen-
eration, the first class clicked on is the parent class; for aggregation, 
the first class must be the class that contains the second.  

Moving an Existing Class 
You can freely move a class anywhere on the canvas that you 
desire. Do this by clicking on the desired class and dragging the 
class to the new location.  Links will adjust themselves in order to 
maintain the connection with the moved class.
1 – 41



Chapter 1: Agent Construction Tools
Moving Multiple Classes
You can move multiple classes in a single operation. First, select 
the class you wish to move. To do this, hold the Control key down 
and select the classes with the mouse. Once you have a groupof 
selected classes and while holding the Control key down and drag-
ging one of the selected classes to a new location. You will notice 
that all the selected classes move with the mouse cursor. To dese-
lect the classes, simply click on the canvas.

Deleting an Existing Class
You can delete an existing class by clicking on that class (e.g. 
selecting it) and then right-clicking and selecting the Delete item 
from the pop-up menu.  Likewise, a selected class can be deleted 
using the Delete item in the Edit menu.  Note that when an class is 
deleted, all links to that class are also deleted.

Deleting an Existing Link
You can delete an existing link either by selecting a link (a selected 
link is red in color) and then right-clicking and selecting Delete 
from the pop-up menu or using Delete in the Edit menu.

Changing the Link Type of an Existing Link
You can change the properties of a link by selecting that link and 
right-clicking to bring up the pop-up menu. You can then select the 
link (turning it red) and change the link type by selecting one of the 
types from the Link Type hierarchical menu.

Viewing and Altering the Properties of an Existing Link
You can view and modify the link label, description and type of a 
selected link by right-clicking on the selected (red) link. You can 
then select the Properties item from the pop-up menu. Agent-
Builder will then display the Link Properties dialog that will allow 
you to see and alter the name, description, and link type of the 
1 – 42



Chapter 1: Agent Construction Tools
selected link. Figure 20 shows this dialog for viewing and editing 
link properties. 

Saving a Object Model
You can save an object model by selecting Save in the File menu. 
You can then close the Object Modeler and return to it at a later 
time.  The Save action will save the classes and links as well as 
their locations relative to each other.

Saving the Object Model to a File
The object model can be saved to a text file by selecting File  
Generate Printable. Selecting this menu item will display a file 
dialog for saving the object model to a file.  By default, the direc-
tory is set to the current working directory, and the filename is set 
to object-model-name.txt.The text file that is generated will con-
tain a text description of all of the classes in the object model. Cur-
rently, no information is being printed about class links. “Default 
Ontology Object Model (Printable)” on page 319 shows the con-
tents of the DefaultOntology object model. 

Figure 20. Link Properties Dialog
1 – 43



Chapter 1: Agent Construction Tools
Clearing an Object Model
If you wish to delete everything from the current object model and 
start over, you can do so by selecting Clear under the Map menu.  
Note that this will remove all classes and links that have been 
entered. AgentBuilder will ask you to confirm this by displaying a 
confirmation dialog window.  You can either select Yes if you are 
sure that you want to clear the current object model, or select No if 
you decide not to clear the canvas.  Note that if the you later decide 
you want to use the previous object model and have not saved the 
current object model since clearing it you can close the Object 
Modeler and not save the changes.  However, if you Save after 
clearing the object model, there is no way to revert to the previous 
object model.

Importing Class Files
You can import class files into your object model. This allows you 
to automatically create classes in your object model by simply 
importing selected classes. Figure 21 shows the Object Modeler's 
Import Dialog.

The Import Dialog is accessed through the File  Import Class 
Files menu item.  To import class files, you must first enter the full 
package and class name in the class text field. The package name is 
required, because the Java reflection API can only look up fully 
qualified class names. Once the package name has been entered 
into the Package text field, the class name must be entered into the 
Class text field.

To add the class to the list, you must either press the Enter key 
while the cursor is inside the Class text field, or click on the Add 
button. The new item in the list will be a fully qualified class name. 
As a convenience, the contents of the Package list contains the 
package names for the classes already defined; this makes it easy to 
enter additional classes from those packages.
1 – 44



Chapter 1: Agent Construction Tools
Once you have finished adding classes to the list, you have the 
option of importing the inherited attributes and methods by clicking 
on the checkbox labeled Import inherited attributes and methods.  
Keep in mind that any class being used as a parameter or return 
value must be a primitive, basic Java type (arrays, hashtables, enu-
meration, and objects), or defined in the same object model. If this 
is not the case, a warning dialog will be displayed with a list of 
undefined classes. You can now click on the OK button to import 
the classes. Any classes that are not included in your classpath will 
generate a warning and will not get imported into the object model. 
Clicking on the Cancel button will cancel importing classes. 

Updating Objects 
If at any time the class files for the objects defined in the object 
model are modified, you will need to recompile the class and 

Figure 21. Object Modeler Import Dialog
1 – 45



Chapter 1: Agent Construction Tools
update them in the Object Modeler. To update the objects in the 
object model, you need to select the Update Objects menu item 
from the File menu. This will bring up the Update Dialog, see Fig-
ure 22. You will see the list of objects defined in the object model. 
You will need to select the objects that you wish to update. The 
Select All button will select all classes listed in the objects pane. 
Once you have selected the classes to update, you must click on the 
OK button to update the classes. If the new changes of the object 
include a class that's not defined, it will generate a warning. If you 
click on the Cancel button, no classes will get updated.

Listing Undefined Classes
Once you have imported objects into the object modeler, you can 
easily view which classes, if any, need to be defined using the 
Undefined Types dialog. You won’t be able to import any objects 
into the PAC Editor if they contain undefined types.

To access the Undefined Types dialog, you need to select the File 
 List Undefined Classes menu item. The dialog will provide a 

list of types that are undefined and point to the class objects using 

Figure 22. Update Dialog
1 – 46



Chapter 1: Agent Construction Tools
them. Once you have defined all types in the current object model, 
selecting the File  List Undefined menu item will bring up a dif-
ferent dialog informing you that all types have been defined.

Exporting Java Files
Once your object model contains classes, you can export the classes 
into Java files. Figure 23 shows the Object Modeler's Export Dialog.

The Export Dialog is accessed through the File  Generate Java 
Files menu item. To export Java files, you must select the classes 
you want to export. You can make your selections in one of three 
ways. If you just want to select a single class, you can do so by 
selecting the class from the list using the left mouse button. To 
select multiple classes, hold down the Control key while selecting 
classes with the left mouse button. To select all of the classes in the 
list, click on the Select All button.

Figure 23. Object Modeler Export Dialog
1 – 47



Chapter 1: Agent Construction Tools
Once the classes to be exported are selected, you must specify a 
directory to which the Java files will be exported. The default direc-
tory is your current working directory. To change the export direc-
tory, click on the Select Directory button. Clicking on the Select 
Directory button will display the Directory Dialog shown in Figure 
24.

Once a directory has been specified, you can click on the OK button 
to export the selected classes into Java files. Alternatively, you can 
click on the Cancel button to cancel the operation. After the 
selected classes have been exported, Java files will appear in the 
directory that you specified. The file names will be the class names 
with the.java extension appended to the name. 

Switching Windows
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tools are open. To switch to the 

Figure 24. Directory Dialog
1 – 48



Chapter 1: Agent Construction Tools
desired tool, select the tool from the Windows menu. The selected 
tool will then be brought to the top of the display. 

Accessing Help 
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool. The Index menu item will display an index to the help 
system's contents. The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit. The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information. The AgentBuilder Home Page 
menu item will display the home page for the AgentBuilder prod-
uct.

Closing the Object Modeler
You close the Object Modeler by selecting the Close item in the 
File menu.  If necessary, AgentBuilder will query whether you 
want to save your changes.  Selecting Yes will save all changes 
since the previous Save.  Selecting No will revert to the object 
model configuration last saved. 

Exiting AgentBuilder 
To exit from AgentBuilder, select the Exit from the File menu. 
AgentBuilder will then display a dialog asking whether you are 
sure you want to exit. If so, then click on Yes button; if you do not 
wish to exit, click on the No button. 
1 – 49



Chapter 1: Agent Construction Tools
D. Agency Manager
Note: The Agency Manager is part of the AgentBuilder Pro product. The 
Agency Manager is not provided with the AgentBuilder Lite product. If you 
are an AgentBuilder Lite user and want to use the tools that are provided 
with the Agency Manager please contact Acronymics, Inc. for an upgrade to 
AgentBuilder Pro.

The Agency Viewer allows you to view and run agencies. Using the 
Agency Manager, you can quickly view an agency's properties, 
agents, protocols and JVM groups. There are two main tools in the 
Agency Manager that help you create agents that communicate, 
cooperate, and negotiate with each other: the Agency Viewer and 
the Role Editor. Figure 25 shows the Agency Manager panel. 

Figure 25. Agency Manager
1 – 50



Chapter 1: Agent Construction Tools
Agency Manager
The File menu allows you to open other agencies, save an agency, 
create new agents, import protocols, update protocols, create JVM 
groups, and assign agents to JVM groups. The File menu also 
allows you to exit AgentBuilder. The Edit menu allows you to cut, 
copy, paste, and delete certain properties from the agency. The 
Agency Properties dialog can also be displayed using the Edit 
menu. The Options menu allows you to modify the display options 
for the Agency Manager. The Tools menu gives you access to the 
other agent tools. The Windows menu lets you switch between 
other AgentBuilder tool windows that are open. The Help menu 
gives you access to the AgentBuilder help system.

Using the Agency Manager

 Using the Tabbed Pane
You can quickly view an agency's properties, agents, protocols, and 
JVM groups by using the Agency Manager's tabbed pane. The 
Properties tab displays the agency's name, description, ontologies, 
location, start time, vendor, and author. The Agents tab provides a 
list of agents that belong to the agency.  The agent's properties can 
be displayed in the description area by selecting an agent. The Pro-
tocols tab provides a list of protocols that belong to the agency. The 
protocols name, description and ontologies are displayed when a 
protocol is selected. The JVM tab provides a list of JVM groups in 
which agents are assigned. The list of agents assigned to a JVM 
group is displayed when selecting a JVM group.

You can also modify the placement of the tabs. The Options menu 
contains the Tab Placement menu. The Tab Placement menu 
allows you to set tab placement at the top, bottom, right, or left side 
of the main window.
1 – 51



Chapter 1: Agent Construction Tools
You can delete items in the list by using the Edit menu's Delete 
function. The Delete function will delete the selected list item after 
user confirmation.

List items can also be cut, copied, and pasted within the same 
agency and between different agencies. To do this, first select a list 
item from one of the tabbed panes. Then select Cut or Copy from 
the Edit menu. Before pasting the item in the clipboard, you must 
decide if you also want the clipboard item to be pasted into another 
agency. The tool automatically ensures that the list items are only 
inserted to the appropriate lists. For example, agents can only be 
pasted into agent lists. When you are ready to paste the clipboard 
item, select the Paste menu item from the Edit menu. If the paste is 
allowed, the clipboard item will be added to the list in the tabbed 
pane. List items that belong to the Protocols tab cannot be copied or 
pasted into protocol lists.

Opening an Agency
To open an existing agency, select File  Open… menu item from 
the Agency Manager menu bar. The Open Agency dialog (Figure 
26)will be displayed with a list of agencies that exist for the current 
repository being used. To select an agency from the list, you can 
either double-click on the agency, or select an agency from the list 
and click on the OK button. Clicking on the Cancel button will can-
cel opening the agency. 

 Saving the Current Agency
If the agency has been modified in any way, you must save the cur-
rent agency information in order to make the changes permanent. 
Changes that require saving include modifying the agency's proper-
ties in the Agency Properties dialog and adding or deleting list 
items from any of the tabbed panes. To save the current agency, 
you select the File  Save menu item from the Agency Manager 
menu bar.
1 – 52



Chapter 1: Agent Construction Tools
Creating a New Agent
To create a new Agent using the Agency Manager, you need to 
select the New Agent… menu item from the File menu. The Agent 
Properties dialog will be displayed as shown in Figure 27. This dia-
log will allow you to enter the new agent's name, description, 
author, company, icon file, engine cycle time, agencies, ontologies, 
and communications properties. The creation date is set automati-
cally, and is therefore a read-only text field (See “Creating a New 
Agent” on page 69 for more information on creating new agents). 

Importing a Protocol
In order to import an existing protocol, you will need to select File 

 Import Protocols… menu item from the Agency Manager menu 
bar. The Import Protocol dialog will be displayed with a list of pro-
tocols that exist for the current repository being used. To select a 
protocol from the list, you can either double-click on the protocol, 
or select a protocol from the list and click on the OK button. Click-
ing on the Cancel button will cancel the Import Protocol dialog 
operation.  

Figure 26. Open Agency Dialog
1 – 53



Chapter 1: Agent Construction Tools
Updating Protocols 
To update the protocols in the agency, you need to select the 
Update Protocols menu item from the File menu. This will bring 
up the Update Protocols Dialog, see Figure 28. You will see a list of 
protocols defined in the current agency. You will need to select the 
protocols that you need to update. The Select All button will select 
all protocols listed in the protocols pane. Once you have selected 
the protocols to update, you must click on the OK button to update 
the protocols.

Creating a JVM Group
A JVM group is a set of agents from the agency that will run inside 
the same Java Virtual Machine (JVM). You can start the group of 
agents from the AgencyViewer or from the Project Manager. If an 
agent doesn't belong to a JVM group, it will run in it's own JVM. 
To create a JVM group, select File Create JVM… menu item 
from the Agency Manager. The Create JVM Dialog ( Figure 29 ) will 
prompt you for a name for the JVM group. Once you have entered 

Figure 27. Agent Properties Dialog
1 – 54



Chapter 1: Agent Construction Tools
the name and click on OK button, the new JVM group will get 
added to the JVM list. The following section explains how to add 
agents to your new JVM group.

Assigning Agents to a JVM Group 
In order to assign agents to a JVM group, you need to select File  
Assign JVM… menu item from the Agency Manager. This will 
bring up the Assign Agents Dialog, see Figure 30. You will see a list 
of available agents in the Available Agents panel. Before you add 
agents to a group, you need to select a JVM group from the drop 
down list in the Selected Agents panel. You can add a single agent 
by selecting the desired agent and clicking on the add button, or you 

Figure 28. Update Protocols Dialog

Figure 29. Creating a JVM Group
1 – 55



Chapter 1: Agent Construction Tools
can add all the agents to the group by clicking on the Add All but-
ton.

If the Available Agents panel contains no agents, that means that all 
agents already belong to a group, or the agency contains no agents. 
If the first case is true, you can remove an agent from a JVM group 
and add it to another JVM group. You can do this by selecting the 
JVM group the agent belongs to and clicking on the Remove but-
ton from the Selected Agents panel. This will remove the agent 
from the JVM group and add it to the Available Agents panel. You 
can then add the agent to the desired group using the method 
described above.

Viewing/Editing Agency Properties
The agency's properties get displayed in the description area when 
you click on the Properties tab in the tabbed pane. To modify any 
information from the agency properties, you must select the Edit  

Figure 30. Assigning Agents to a JVM Group
1 – 56



Chapter 1: Agent Construction Tools
Properties… menu item from the Agency Manager menu bar. This 
action will display the Agency Properties dialog, where you can 
make your changes. The Properties tab must be selected in order to 
display the Agency Properties dialog. In order to apply your new 
changes, click on the OK button. The Cancel button will cause the 
system to ignore any changes that were made. Figure 31 shows the 
Agency Properties dialog. 

Switching Windows
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tool windows are open. To switch 
to the desired tool, select the tool from the Windows menu. The 
selected tool will then be brought to the front on your display.

Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read help information for the cur-
rent tool. The Index menu item will display an index of the help 

Figure 31. Agency Properties Dialog
1 – 57



Chapter 1: Agent Construction Tools
system's contents. The Tutorial menu item will display a Quick 
Tour of the AgentBuilder Toolkit. The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information. The AgentBuilder Home Page 
menu item will display the home page for the AgentBuilder prod-
uct.

Exiting AgentBuilder
The File menu's Exit menu item should be selected to exit Agent-
Builder. This will close all of the tools that are currently open. If 
you have modified the agency properties, you will be given an 
opportunity to save the agency's properties before exiting the sys-
tem. 

Agency Viewer
The Agency Viewer tool is used to run a set of agents belonging to 
an agency. The Agency Viewer provides a pane for viewing the 
icons that represent the agents. You are able to drag the icons to a 
new position, or change the agent's icon. Once the agency is run-
ning, you can view agent communications in two ways. First, notice 
that when two agents are communicating, a line is drawn between 
the two agents with a small ball moving along this line. The line 
represents the connection being made between agents, and the ball 
represents the message being delivered to the agent. You can also 
examine agent messages in a text area at the bottom of the panel. 
The message text area displays the sender and receiver of the mes-
sage, as well as for the content of the message. Figure 32 shows the 
Agency Viewer.

 Overview
The Agency Viewer contains a menu bar with six items: File, Edit, 
Exec, Options, Windows, and Help. The File menu allows you to 
1 – 58



Chapter 1: Agent Construction Tools
save an agency, create a message log, and save/open runtime mes-
sages. The Edit menu gives you access to the agency properties and 
the agent properties dialogs. The Exec menu allows you to start, 
pause, stop, and reset the agents. The Options menu allows you to 
turn on or off message text area, display the agent status window, 
and specify the message buffer size.

During each run, agents switch to different states: Stop, Register-
ing, Registered, Running, and Paused. The agent's icon label 
changes colors according to the state it is in. The red label signifies 
the agent is stopped. The pink label means the agent is in the pro-
cess of registering with the agency. The yellow label means the 

Figure 32. Agency Viewer
1 – 59



Chapter 1: Agent Construction Tools
agent successfully registered with the agency. The green label 
means the agent is currently running. The cyan label indicates that 
the agent is paused. 

 Operation: Running an Agency

 Setting Agency in Register Mode
In order to run agents in the Agency Viewer, the agents must first 
register with the agency. In order for the agency to register agents, 
the Agency Viewer needs to be set to Register Mode. You can do 
this by selecting Exec  Register Mode menu item from the 
Agency Viewer's menu bar.

 Registering the Agents
Once the Agency Viewer is in register mode, you must start the 
agents in agency-mode. There are several ways to start running an 
agent. The agents can be started individually by right clicking on an 
agent's icon and selecting Run from the resulting pop-up menu. 
You can also start all agents at once using the Agency Viewer by 
selecting the Run All menu item from the Exec menu bar. If you 
select the Run All menu item, the Agency Viewer will run only the 
agents that are set to run in the current host. If an agent has been set 
to run on a different host, the Agency Viewer will not run it and 
will display a warning message. You can start this agent from the 
Agent Engine; make sure the -agency-mode flag is turned on so that 
it registers with the agency. (see “Run-Time System” on 
page 251.). If any JVM groups are specified for the agency, it will 
use it to run multiple agents in the same Java Virtual Manchine. 
This will only occur when you select the Run All menu item from 
the Agency Viewer. If the agents are started within the Agency 
Viewer tool, the agency-mode flag is set automatically. When the 
agent's label changes to the color yellow, it means it has registered 
successfully.
1 – 60



Chapter 1: Agent Construction Tools
 Running and Resetting agents
Once the agents have registered, you can start running the agents 
from the Agency Viewer by selecting the Exec  Begin menu 
item. The Agency Viewer will then start the engines for each regis-
tered agent. The agency can still register agents when it is running 
(i.e., in run mode). The agent's label will change to green when the 
agent starts running. 

Agents can only be reset if they are either running or paused. To 
reset an agent, right-click on the agent's icon and select the Reset 
menu item. If you want to reset the entire agency, select the Exec 

 Reset menu item from the Agency Viewer's menu bar.

 Pausing and Unpausing the agents
Whenever the agents are running in agency-mode, you can pause 
and unpause them. There are two ways of pausing the agents. You 
can pause an individual agents by right-clicking on the agent and 
selecting Pause from the pop-up menu. You can also select the 
Pause menu item from the Exec menu bar. If you select Pause 
from the menu bar, it will cause all running agents to pause. You 
can use the same method to unpause the agents. Selecting Unpause 
from the menu bar will unpause any agents that have been paused. 
Any agent with a cyan color label is in pause mode.

Displaying the Agent's Message History Dialog
You can view the messages that each agent has sent or received by 
displaying the Message History dialog (Figure 33). To view the 
Message History dialog, you need to right-click on an agent and 
select the Message History menu item. With this dialog, you can 
see two lists and a description area. The top list displays the name 
of the agents that have sent messages to this agent. The bottom list 
displays the names of the agents that this agent has sent messages. 
Clicking on any of the agent names will display the message in the 
description area. You can display the Message History dialog for 
1 – 61



Chapter 1: Agent Construction Tools
more than one agent. To close the dialog, simply click on the OK 
button.

 Displaying the Agent's Status Window
The agent status window provides you with a list of agents along 
with their current state. You can access the window by selecting 
Options  Agent Status from the Agency Viewer menu bar. Fig-
ure 34 shows the Agent Status dialog.

Figure 33. Message History Dialog

Figure 34. Agent Status Dialog
1 – 62



Chapter 1: Agent Construction Tools
 Opening and Saving Runtime Messages
At the end of each run, you can save the runtime messages for later 
examination. There are two ways to save these messages. You can 
select File  Save Run and save the message to a file. (A default 
name has been provided with the following format: date AgencyN-
ame RunNumber. e.g. 11_11_98 NewAgency Run0). You can also 
specify the file name by selecting File  Save Run As from the 
Agency Viewer menu bar.

 Specifying Message Buffer Size
You can set the number of messages that are saved when running 
an agency by selecting the Options Message Buffer Size menu 
item from the Agency Viewer menu bar. You can enter any number 
between 0 and 100,000. The default value for all the agencies is 
1000. When the buffer size has reached its limit and a new message 
arrives, the oldest message will be discarded and the new one will 
be kept.

 Creating a Runtime Message log
If you wish to log all messages sent to a text file when running the 
agency, select the Message Log menu item from the File menu 
bar. This will bring up the Save File dialog where you can enter the 
location and filename of the log file. Once you have selected the 
name of the file, click on the Save button. A check mark will appear 
in the Message Log menu item showing that all messages are cur-
rently being logged.

Handling High Volumes of Communication
If the agency you are building is creating a high volume of mes-
sages you may wish to speed up the AgencyViewer.  There are sev-
eral changes you can make to speed up the rate at which the tool  
handles messages. The first is to set the message buffer size to 0, 
see previous section for details.  The second requires turning off the 
1 – 63



Chapter 1: Agent Construction Tools
message trace at the bottom of the AgencyViewer window.  To 
accomplish this, toggle the Show Messages menu item on the 
Options menu.  You may also want to consider turning off all log-
ging since logging generates a large amount of overhead that 
should be avoided when handling high message volumes.

Viewing and Altering the Properties of the Agency
You can view and modify the properties of the agency by selecting 
the Properties menu item in the Edit menu bar. The only restric-
tion is that the agency name cannot be modified from the Agency 
Viewer tool, but the description, author, company, and communica-
tions can be modified. The only tool that allows you to change the 
agency name is the Project Manager.

Viewing and Altering the Properties of the Agent
To display the agent's properties, you can either click on the agent 
and select Agent Properties menu item from the Edit menu bar, or 
simply double-click on the agent's icon. The Agent Properties dia-
log will be displayed along with the current information for the 
selected agent. In order for your changes to be applied, you must 
click on the OK button. Clicking on the Cancel button will cause 
the system to ignore any changes that have been made. The agency 
will be saved if the name of an agent is modified.

Changing the Agent's Icon
To change the agent's icon, you will need to use the agent's Proper-
ties Dialog (See previous section for a description of opening the 
Agent Properties dialog). From the Agent Properties dialog, click 
on the Browse button to display the Icon Dialog. The Icon Dialog 
allows you to select an icon for the agent by clicking on an icon. 
The selected icon will be highlighted with a red border. Once you 
have selected the desired icon for the agent, click on the OK button. 
The Cancel button will close the Icon dialog without changing the 
agent's icon file. Figure 35 shows the Icon Dialog.
1 – 64



Chapter 1: Agent Construction Tools
Saving Agency Properties
You can save the agency by selecting Save in the File menu. The 
save action will save the agents properties and agency properties, 
which include the current location in the panel and the message 
buffer size.

 Switching Windows
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are currently open. This menu facilitates 
switching between the tools when multiple tools are active. To 
switch to the desired tool, select the tool from the Windows menu. 
The selected tool will then be brought to the top of the window 
stack. 

 Accessing Help
The help system con be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool. The Index menu item displays an index of the help 
system's contents. The Tutorial menu item displays the Quick Tour 

Figure 35. Icon Dialog
1 – 65



Chapter 1: Agent Construction Tools
of the AgentBuilder toolkit. The About AgentBuilder menu item 
displays the AgentBuilder logo along with the version number and 
copyright information. Selecting the AgentBuilder Home Page 
menu item will display the home page for the AgentBuilder prod-
uct.

 Closing the Agency Viewer
You close the Agency Viewer by selecting the Close item in the File 
menu. If necessary, AgentBuilder will query whether to save the 
changes made to the agency.

 Exiting AgentBuilder 
To exit AgentBuilder, select the Exit in the File menu. Agent-
Builder will display a dialog asking whether you are sure you want 
to exit. If so, then click on Yes button; if you do not wish to exit, 
click on the No button. 
1 – 66



Chapter 1: Agent Construction Tools
E. Agent Manager
The Agent Manager allows you to view, edit, create, and run 
agents. Using the Agent Manager, you can quickly view an agent's 
properties, actions, beliefs, commitments, PACs and rules. Once an 
agent has been completely defined, the Agent Manager allows you 
to generate an agent's definition file and classes. Thereafter, you 
can run the agent from the Agent Manager. If you are starting from 
scratch, the Agent Manager allows you to create a new agent. Fig-
ure 36 shows the Agent Manager panel.

Figure 36. The Agent Manager
1 – 67



Chapter 1: Agent Construction Tools
Overview
The File menu allows you to create a new agent, open an existing 
agent, save the current agent and generate a text file describing the 
agent. The File menu also allows you to exit the system. The Edit 
menu allows you to cut, copy, paste, delete or modify certain agent 
properties. The Options menu provides functions for executing the 
current agent and displays options for the Agent Manager. The 
Tools menu gives you access to the other agent tools. The Win-
dows menu lets you switch between other AgentBuilder tools that 
are open. The Help menu gives you access to the AgentBuilder help 
system.

The tabbed pane in the main window allows you to quickly view 
the current agent's properties, PACs, PAC instances, Java instances, 
actions, commitments, and rules. Selecting a tab will change the 
panel accordingly. 

Operation

Using the Tabbed Pane
The tabbed pane allows you to see information about the current 
agent. For instance, selecting the Actions tab will change the 
tabbed pane to display a list of defined actions and a description 
area. The description area is used to display information about the 
selected action. The Properties panel is the only exception to the 
list-description paradigm, since its panel only contains a description 
area.

You can also modify the placement of the tabs. The Options menu 
contains a Tab Placement menu. The Tab Placement menu 
allows you to change the tab placement to be on the top, bottom, 
right, or left side of the main window.
1 – 68



Chapter 1: Agent Construction Tools
You can delete items in the list by using the Edit menu's Delete 
function. The Delete function will delete the selected list item after 
user confirmation. You can also launch an agent tool for a specific 
list item. For example, double-clicking on a list item in the Commit-
ments panel will cause the commitment editor to be loaded for the 
current agent. 

List items can also be cut, copied and pasted in the same agent and 
between different agents. To do this, first select a list item from one 
of the tabbed panels. Then select Cut or Copy from the Edit menu. 
Before pasting the item from the clipboard, you must decide if you 
also want the clipboard item to be pasted into another agent. The 
tool automatically ensures that actions are only pasted into action 
lists, rules are only pasted into rule lists, etc. When you are ready to 
paste the clipboard item, select the Paste menu item from the Edit 
menu. If valid, the clipboard item will be added to the list in the 
tabbed panel.

Creating a New Agent
To create a new agent, select the New function from the File menu. 
You will be presented the Agent Properties dialog shown in Figure 
37. When creating a new agent, the Creation Date field is automati-
cally set and is therefore a read-only text field. The other text fields 
are editable and include a Name field, a Description area, an Author 
field, and a Company field. 

In addition to the text fields and text area, the agent properties dia-
log also includes a combo box for the Engine Cycle Time, and but-
tons for Agencies…, Ontologies…, Communications…, and 
Security…. The Security… button is currently not implemented. If 
no agencies or ontologies exists then the Agencies… and/or Ontol-
ogies… button will be disabled.
1 – 69



Chapter 1: Agent Construction Tools
The Engine Cycle Time combo box allows you to modify the cycle 
time when the agent is running in the runtime agent engine (See 
“Run-Time System” on page 251). The Browse button allows you 
to change the agent's icon file. The Icon Dialog allows you to select 
an icon for the agent by clicking on an icon. The selected icon will 
be highlighted with a red border. Once you have selected the icon, 
click on the OK button to accept the new icon. The Cancel button 
will close the Icon Dialog without changing the agent's icon file. 
Figure 38 shows the Icon Dialog. 

The Agencies Dialog allow you to associate a set of agencies with a 
particular agent. The dialog consists of a two column table. The left 
column lists all of the available agencies. To associate an agent 
with a particular agency, select the checkbox in the right column. A 
check indicates that the agent is associated with a particular agency. 
When finished with the Agencies dialog, you must select the OK 
button for the selections to be registered. Selecting the Cancel but-
ton will ignore any selections that have been made. Figure 39 
shows the Agencies Dialog.

Figure 37. Agent Properties Dialog
1 – 70



Chapter 1: Agent Construction Tools
The Ontologies Dialog, is similar to that of the Agencies Dialog, 
except that it is read only. Depending on which PACs the agent 
imports, the proper ontologies will be added automatically. The 
Ontologies Dialog is shown in Figure 40.

The Communications Dialog allows you to specify the communica-
tion types (e.g., RMI, sockets) available to the agent, and specify 

Figure 38. Icon Dialog

Figure 39. Agencies Dialog
1 – 71



Chapter 1: Agent Construction Tools
communication parameters such as IP address. You can enter the 
port number and IP address for the agent, or accept the default val-
ues provided. The default value for the IP address is set to the key-
word CURRENT_IP_ADDRESS, this means the agent's IP address 
will be set to the current machine at the time the agent runs. The 
port number is set to a random number between 1,000 and 6,000. If 
you change the default values for the Communications Dialog, you 
must select the OK button in order for the changes to be registered. 
Selecting the Cancel button will cancel any changes that have been 
made. Figure 41 shows the Communications Dialog.

In order for you to successfully create a new agent, you must supply 
a name for the new agent and select at least one agency. When you 
are done entering information for the new agent, you must click on 
the OK button. Clicking on the Cancel button will cancel the cre-
ation of a new agent.

Opening an Agent
To open an existing agent, select the Open menu item from the File 
menu. You will be given a list of agents that exist for the current 
repository being used. To select an agent from the list, you can 
either double-click on the agent, or select an agent from the list and 

Figure 40. Ontologies Dialog
1 – 72



Chapter 1: Agent Construction Tools
click on the OK button. Clicking on the Cancel button will cancel 
the opening of another agent.

Saving the Current Agent
If the agent has been modified in any way, you must save the cur-
rent agent information in order to make the changes permanent. 
Changes that require saving include modifying the agent's proper-
ties in the Agent Properties dialog and deleting list items in any of 
the tabbed panes. The File menu's Save item will save the current 
agent's information into the current repository's agent store.

Saving the Agent to a File
You can generate a text file describing the current agent. To do this, 
select File  Generate Printable. This will display a file dialog 
for saving the agent to a file. By default, the directory is set to the 
current working directory, and the filename is set to agent-name.txt. 
“Agent Description (Printable)” on page 327 shows the contents of 

Figure 41. Communications Dialog
1 – 73



Chapter 1: Agent Construction Tools
the file generated from the Hello World agent. The file contains a 
text description of the agent's properties, including every PAC, 
PAC instance, JAVA instance, action, commitment and rule.

Viewing/Editing Agent Properties
You can easily view the agent's properties by clicking on the Prop-
erties tab in the tabbed pane. If you want to modify any information 
that is displayed in the properties panel, you must select the Edit 
menu's Properties menu item. You will be given a Properties dia-
log, from which you can modify the agent's properties. This is the 
same dialog used to create a new agent. In order for your changes to 
be applied, you must click on the OK button. Clicking on the Can-
cel button will cause the system to ignore any changes that have 
been made.

Generating the Agent Definition
When you have finished constructing an agent, you must generate 
an agent definition. Do this by selecting the Generate Agent Defi-
nition menu item from the Options menu. You will then be pre-
sented with the file dialog Choose RADL File Location. The Choose 
RADL File Location dialog is shown in Figure 42

The file dialog allows you to select the name and location of your 
RADL file. The file dialog has several features worth noting. At the 
top of the dialog, there is a combo box that displays the current 
directory. The combo box allows you to go up in the directory hier-
archy. The dialog also contains icons for going up to the next direc-
tory, returning to the home directory, and creating a new directory, 
respectively. In the center of the dialog is a pane for displaying the 
contents of the current directory. In this pane, you can double click 
directories to open them. At the bottom of the dialog, there is and 
editable text field where you can modify the default name of the 
RADL file.
1 – 74



Chapter 1: Agent Construction Tools
Once you determine the name and location of the RADL file, you 
have three different ways in which you can make your file selec-
tion. The first way is to select a file in the file list which will over-
write the selected file. The second way is to press the Enter key on 
your keyboard while your cursor is in the text field displaying your 
current selection. The third way to register the file selection is to 
press the Save button when a file is specified in the File text field. 

Once a RADL file is selected, the RADL file is generated for the 
current agent. The agent definition is then used by the Agent Man-
ager to generate Java source files for the agent’s PACs.

Running the Agent
With the agent definition and class files generated, you are now 
ready to run the agent. If you select the Run Agent menu item from 
the Options menu, you are first presented with a file dialog for 
selecting a RADL file to use. The File Dialog is the same dialog 
described above. Once a valid RADL file has been selected, the 
Agent Engine Options dialog shown in Figure 43 will be displayed.

Figure 42. File Dialog
1 – 75



Chapter 1: Agent Construction Tools
The Agent Engine Options dialog allows the user to specify all of 
the parameters for running the agent. Once all of the parameters 
have been specified, you must select the OK button. Selecting the 
Cancel button will cancel running the agent. If you select the OK 
button, you will be presented with the engine console, shown in 
Figure 44.

The engine console allows you to monitor the progress of the run-
ning agent. Any output from the running agent will be shown in the 
output description area at the top of the console. Any errors that 
occur during the execution of the agent will be shown in the error 
description area at the bottom of the console. The engine console 
allows you to save, clear, and freeze the output from the running 
agent as well as save and clear the errors that are generated. 

For a more complete description of the Agent Engine Options dia-
log and the engine console, see “Run-Time System” on page 251.

The agent engine that runs the agent is always launched on a sepa-
rate Java virtual machine. Since the agent engine is run separately 

Figure 43
. The Agent Engine Options Dialog
1 – 76



Chapter 1: Agent Construction Tools
Figure 44. Engine Console
1 – 77



Chapter 1: Agent Construction Tools
from the AgentBuilder tools, you can shutdown AgentBuilder and 
still have the agent engine running. Running the engine on a sepa-
rate virtual machine also allows the user to modify their classpath 
settings in the Agent Engine Options dialog. Changes to the class-
path can only occur with each new execution of the agent engine. 
You cannot select the Edit  Set Engine Options menu item and 
dynamically change the classpath while the engine console is run-
ning. 

Running Multiple Agents on Different Machines 
You can run multiple agents on different machines and still have 
them communicate, cooperate, and negotiate with each other. How-
ever, there are a couple of criteria that must be met in order to run 
the agents on different machines. First, make sure that each agent, 
including the agency, has the IP address of the machine it will run 
on. The agency and agents cannot have the keyword 
CURRENT_IP_ADDRESS assigned to it. Next, you will need to 
regenerate the RADL files for all the agents in the agency. This will 
ensure that each agent in the agency will know what machine the 
other agents are running on. You can now run the agents on the 
machines they were assigned (see “Run-Time System” on 
page 251. for information on how to run agents outside of Agent-
Builder). 

Switching Windows
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tools are open. To switch to the 
desired tool, select the tool from the Windows menu. The selected 
tool will then be brought to the top of the window stack.
1 – 78



Chapter 1: Agent Construction Tools
Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool.  The Index menu item will display an index to the help 
system's contents.  The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit.  The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information.  The AgentBuilder Home 
Page menu item will display the home page for the AgentBuilder 
product. 

Exiting AgentBuilder
The File menu's Exit menu item allows you to exit AgentBuilder. 
Selecting this will close all of the tools that are currently open. 

Action Editor
The Action Editor allows you to view, edit and create actions. An 
action is an association between an action name and a method on a 
PAC.  The action name may be the same as the method name or it 
may be different.  An action also contains lists of preconditions and 
effects which will automatically be added to any rule containing the 
action. The actions are optional, you can use direct method invoca-
tion instead. The Actions will be needed when you create Commit-
ments that need to invoke methods on PACs.

Overview 
You can open the Action Editor by selecting Action Editor from 
the Tools menu in the Agent Manager or selecting the Action tab 
in the Agent Manager. You can also double-click on an action in 
the Agent Manager Actions Panel to open the Action Editor. After 
opening the Action Editor, you can use the File menu to create a 
new action, save the current list of actions, close the Action Editor, 
1 – 79



Chapter 1: Agent Construction Tools
and exit the system. The Edit menu allows you to delete actions 
from the defined actions list. The Windows menu lets you switch 
between other AgentBuilder tools that are open. The Help menu 
provides access to the AgentBuilder help system. The Action Editor 
is shown in Figure 45.

The Action Properties panel allows you to either create a new action 
or view a defined action. The Action Properties panel allows you to 
specify an action's name, description, PAC, PAC Instance and PAC 
method.

Figure 45. Action Editor
1 – 80



Chapter 1: Agent Construction Tools
The Defined Actions panel allows you to add new actions to the list, 
or delete defined actions from the list.

Operation

Creating an Action
If you want to create a new action, the Action Properties panel must 
be cleared. If an action is currently being worked on, you can select 
the New menu item from the File menu. Selecting the New menu 
item will prompt you to confirm that you want to create a new 
action.

To create an action, fill out the Action Properties panel. The action's 
name must be entered into the Name text field. You can either press 
the Enter key on your keyboard while your cursor is in the Name 
text field, or click on the Enter button on the panel. Once an action 
name has been entered, the new action name will appear in the 
Defined Action text field. If the text in the Defined Action text field 
has scrolled out of view, you can click on the text field, and use the 
←, →, Home and End keyboard keys.

You can select a PAC from the <PAC> combo-box.  PACs that have 
been defined for the currently loaded agent will be loaded into the 
<PAC> combo-box. The selected PAC will be shown in the Defined 
Action text field.

The Method combo-box is dependent on the selection in the PAC 
combo-box. Once a PAC has been selected, the PAC's methods will 
be loaded into the <Method> combo-box. To complete the action 
definition, you must select a method. The selected method will then 
be shown in the Defined Action text field.

You can also specify a PAC Instance. If there are any PAC 
Instances that have been built from the currently selected PAC, they 
will show up in the PAC Instance combo-box. 
1 – 81



Chapter 1: Agent Construction Tools
You can also enter a description for the action in the Description 
text area.

Adding an Action
Once an action has been completely defined, the Defined Action 
Add button will become enabled. At the minimum, an action must 
have a name, PAC, and method selected. To add the action shown 
in the Defined Action text field, the user must press the Add button.

Pressing the Add button will add the action in the Defined Action 
text field to the list of defined actions. The Action Properties panel 
will be reset so a new action can be defined, or so an existing action 
can be displayed.

Viewing Defined Actions
You can view actions that are in the defined actions list. Selecting 
an action will cause the selected action to be loaded into the Action 
Properties panel.

Editing a Defined Action
Once you load a defined action into the Action Properties panel, 
you can edit the action. You can repeat any of the steps outlined in 
the section on “Creating an Action” on page 81. If you want to add 
the edited action to the list, then add the action as outlined in the 
“Adding an Action” on page 82. If the edited action has the same 
name as the old action, the edited action will overwrite the old 
action. Otherwise, it will be added to the list of defined actions, 
along with the old action.

Deleting a Defined Action
If you wish to delete a defined action, you have two options. You 
can first select the action in the Defined Actions list, then click on 
1 – 82



Chapter 1: Agent Construction Tools
the Delete button. You can also select the action in the list, then 
select the Delete menu item from the Edit menu.

Saving the Actions
After you’re finished adding and deleting actions, you need to save 
the action list to the current agent. To do this, select the Save menu 
item from the File menu.

Switching Windows
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tools are open. To switch to the 
desired tool, select the tool from the Windows menu. The selected 
tool will then be brought to the front on your screen.

Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool.  The Index menu item will display an index to the help 
system's contents.  The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit.  The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information.  The AgentBuilder Home 
Page menu item will display the home page for the AgentBuilder 
product. 

Closing the Action Editor
To close the Action Editor and leave all other tools open, select 
Close from the File menu. If you have modified the list of defined 
actions, you will be given a chance to save the action list before 
closing the Action Editor.
1 – 83



Chapter 1: Agent Construction Tools
Exiting AgentBuilder
The File menu's Exit menu can be used to exit AgentBuilder. This 
will close all of the tools that are currently open. If you have modi-
fied the list of defined actions, you will be given a chance to save 
the action list before exiting the system. 

Commitment Editor
The Commitment Editor allows you to view, edit, and create com-
mitments. Commitments are based on a particular action; they spec-
ify the time an action will be committed and the agent to which the 
action will be committed. The Commitment Editor is shown in Fig-
ure 46. 

Overview 
The File menu allows you to create a new commitment, save the 
current list of commitments, close the Commitment Editor, and exit 
the system. The Edit menu allows you to delete commitments from 
the defined commitments list. The Windows menu lets you switch 
between AgentBuilder tools that are open. The Help menu gives 
you access to the AgentBuilder Help system. 

The Commitment Properties panel allows you to create a new com-
mitment or view a defined commitment. The Commitment Proper-
ties panel allows you to specify a commitment's action, description, 
parameter values for the action, agent to commit the action to, and 
the time the action should be executed.

The Defined Commitments panel allows you to add new commit-
ments to the list or delete defined commitments from the list.
1 – 84



Chapter 1: Agent Construction Tools
Operation

Creating a Commitment
Before creating a new commitment, the Commitment Properties 
panel must be cleared. If a commitment is currently being edited, 
then you can select New from the File menu. Selecting the New 
menu item will cause the system to ask you to confirm that you 
wish to start editing a new commitment.

Figure 46. Commitment Editor
1 – 85



Chapter 1: Agent Construction Tools
To create a commitment, you must enter the required information 
into the Commitment Properties panel. You must select an action 
for which this commitment is defined. The Commitment Properties 
panel contains two radio buttons for selecting User Defined Actions 
or Built-In Actions. The Actions combo box displays the appropriate 
actions depending on which radio button is selected. Currently, 
actions that are tied to commitments must be connected to a PAC 
instance. Once an action has been selected two things will happen. 
The selected action's method will be queried and, if the action's 
method contains any parameters, the Specify Parameter Values 
button will be enabled; if the selected action's method does not con-
tain any parameters, the Specify Parameter Values button will be 
disabled. If the Specify Parameter Values button is enabled, then 
you must specify all parameter values. This process is explained in 
the following section. After selecting an action, the text field in the 
Defined Commitment's panel will show the name of the selected 
action.

After an action has been selected, you must specify the agent to 
whom the commitment will be made. The Committed To combo-
box is located below the Specify Parameter Values button. This 
combo-box is an editable combo-box, and contains a list of avail-
able agents. The list of agents is constructed using the agencies to 
which the current agent belongs. To specify an agent, you can 
either select from the list of agents provided or manually enter an 
agent's name in the combo-box. If you manually enter an agent's 
name, you must press the Enter key in the combo-box so that the 
agent's name can be entered. Once an agent has been specified, the 
agent's name will be displayed in the Defined Commitments text 
field.

You must also specify a time to execute the action. The combo-box 
at the bottom of the Commitment Properties panel is the Time pull-
down menu. The Time pull-down menu provides a number of 
1 – 86



Chapter 1: Agent Construction Tools
options including StartupTime, ShutdownTime and a user-defined 
time. If you select the user-defined item, the system will display the 
Time Dialog described below. If a user-defined time is entered, the 
time will be shown in the combo-box. Once a time is specified for 
the commitment, this time will be shown in the Defined Commit-
ments text field.

You can also enter a description for the commitment in the Descrip-
tion text area.

Specifying Parameter Values 
The Parameters Dialog allows you to easily specify parameter val-
ues for simple and complex objects. The dialog consists of two sec-
tions: a Parameter Tree panel and a panel that can switch between a 
Parameter panel and a Complex Parameter panel. The Parameters 
Dialog is shown in Figure 47. 

The Parameter Tree panel contains a hierarchical tree of the param-
eters. The tree nodes use the following convention for labeling 
name(type). The root node is labeled with the action name and the 
action's PAC type. The children of the root node are the parameters 
for the action's method. Any child nodes with a folder icon indicate 
that the parameter is a complex object whose constructor must be 
specified.

The color of the nodes is also significant. Nodes whose values have 
not been specified have a red label; nodes whose values have been 
specified have a black label. An unspecified node recursively sets 
its parent to be unspecified so that you can easily see which nodes 
have not been specified when the tree is fully collapsed.

To specify a parameter value, you must first select the parameter to 
be specified. Based on the type of node selected, the panel below 
the Parameter Tree will display either a Parameter panel or a Com-
plex Parameter panel. Both the Parameter panel and the Complex 
1 – 87



Chapter 1: Agent Construction Tools
Parameter panel contain a read-only Name and Type text field. The 
name and type of the selected node is shown in the read-only text 
fields. The primary difference between the two panels is that the 
Parameter panel allows you to specify a value for the selected 
parameter. To enter a value for the selected parameter, enter a value 
into the Value text field in the Parameter panel. To enter a null 
value for the parameter, you must type null into the value field. An 
empty string is considered to be a valid value and can also be 
entered into the value field. Once a value has been entered, you 
must press the Enter key on your keyboard while the cursor is posi-
tioned in the Value text field or click on the Enter button in order to 
enter the value in the selected parameter. The new value will be 
shown in the tree after it has been entered.

Figure 47. Parameters Dialog
1 – 88



Chapter 1: Agent Construction Tools
The Complex Parameter panel contains a pull-down menu for spec-
ifying a constructor for the selected parameter. This is necessary 
because the selected parameter's type is a complex object. You 
must now select a constructor from the Constructor pull-down 
menu. 

If no constructors are listed, you must create a constructor for the 
complex object. To do this, go back to the Object Modeler and open 
the ontology that contains the complex object. You can then modify 
the object's properties to include one or more constructors. The 
object model must then be saved, and the PAC Editor must be 
opened from the Agent Manager. From the PAC Editor, update the 
object model that contains the updated PAC. (Please refer to “PAC 
Editor” on page 92 for information on updating PACs.)

Once a constructor is selected for the complex object, the tree node 
for the complex object will change based on the selected construc-
tor. Any parameters that are in the selected constructor become 
children of the tree node. If the children's types are all Java types, 
then you can assign values to the parameters as described above. 
Otherwise, if the children's parameter types contain complex 
objects, the process of selecting a constructor and specifying values 
must be repeated. This process must be repeated until all leaves 
either contain Java types or the selected constructors for complex 
objects have no parameters.

Once you have fully specified the parameter tree, you can click on 
the OK button to register the new parameter values. Clicking on the 
Cancel button will cancel any changes that were made to the 
parameter tree.

Specifying a User-Defined Time
The Time Dialog allows you to specify a specific date and time that 
an action will be committed. The date is specified by selecting a 
month and day from the pull-down menu. The year must be entered 
1 – 89



Chapter 1: Agent Construction Tools
(typed) in a four digit, numerical format. The time is specified 
using the format hh:mm:ss. Time uses three text fields with only 
numerical entries allowed. This dialog is shown in Figure 48. 

Once you have specified a date and time, you must select the OK 
button in order for the time to be set for the commitment. Any 
invalid entries will cause an error dialog to be displayed. You will 
be given an opportunity to correct any errors. If you wish to cancel 
operations using the Time Dialog then select the Cancel button. 
Selecting the Cancel button will ensure that the Time pull-down 
menu remains unmodified.

Adding a Commitment
Once a commitment has been completely defined, the Defined Com-
mitments panel Add button is enabled. In order to construct a com-
pletely defined commitment, you must specify a selected action, 
any parameter values specified through the Parameters Dialog, a 
selected agent to commit to, and a time to perform the action. 

Pressing the Add button will add the commitment in the Defined 
Commitments text field in the list of defined commitments. Notice 
that the Commitment Properties panel is reset, readying it for defin-
ing a new commitment or viewing defined commitments

Figure 48. Time Dialog
1 – 90



Chapter 1: Agent Construction Tools
You can view commitments that are in the Defined Commitments 
list. Selecting a commitment will cause the selected commitment to 
be displayed in the Commitment Properties panel.

Editing a Defined Commitment
Once you load a defined commitment into the Commitment Proper-
ties panel, you can edit the commitment using any of the steps out-
lined in “Creating a Commitment” on page 85. If you want to add 
the edited commitment to the list, then add the commitment as out-
lined in “Adding a Commitment” on page 90. If the edited commit-
ment has the same action and agent, the edited commitment will 
overwrite the old commitment. Otherwise, it will be added to the 
list of defined commitments.

Deleting a Defined Commitment
If you want to delete a defined commitment, you have two options. 
You can first select the commitment in the Defined Commitments 
list and then click on the Delete button to the right of the list. You 
can also select the commitment in the list, then select the Delete 
menu item in the Edit menu.

Saving Commitments
Once you have completed adding and deleting commitments, you 
must save the commitment list for the current agent. To do this, 
select the Save menu item from the File menu.

Switching Windows
The Windows menu is a dynamic menu that displays a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tools are open. To switch to the 
desired tool, select the tool from the Windows menu. The selected 
tool will then be brought to the front on your display.
1 – 91



Chapter 1: Agent Construction Tools
Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool.  The Index menu item will display an index to the help 
system's contents.  The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit.  The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information.  The AgentBuilder Home 
Page menu item will display the home page for the AgentBuilder 
product. 

Closing the Commitment Editor
To close the Commitment Editor and leave all of the other tools 
open, you should select Close from the File menu. If you have 
modified the list of defined commitments, you will be given an 
opportunity to save the commitment list before closing the Com-
mitment Editor.

Exiting AgentBuilder
The File menu's Exit menu item should be selected to exit Agent-
Builder. This will close all of the tools that are currently open. If 
you have modified the list of defined commitments, you will be 
given an opportunity to save the commitment list before exiting the 
system. 

PAC Editor
The PAC Editor allows you to view, edit and create PACs, PAC 
Instances, and Java Instances. The data created by this editor is 
used extensively by the Rule Editor to construct various patterns. 
You cannot directly use classes defined in the Object Modeler in 
your rules. The PAC Editor is necessary for creating PACs from the 
classes so they can be made a part of your rules. 
1 – 92



Chapter 1: Agent Construction Tools
Overview
The File menu can be used to perform various operations on the 
PACs and instances. From the File menu, you can create new 
PACs, PAC Instances and Java instances. You can also save the list 
of defined PACs, PAC Instances, and Java Instances. You can also 
import and update the list of defined PACs. As with all of the other 
AgentBuilder tools, the File menu provides the Close and Exit 
menu items for closing the editor and exiting AgentBuilder. The 
PAC Editor is shown in Figure 49. 

The Edit menu allows you to delete any of the items in the defined 
PACs, PAC Instances, or Java Instances list. The Windows menu 
lets you switch between other open AgentBuilder tools. The Help 
menu provides you with access to the AgentBuilder help system.

The main panel of the PAC Editor contains a Panel Options panel. 
The Panel Options panel contains tabs that allow you to switch 
between the PACs, PAC Instances, or Java Instances panel.  The 
contents of each of the panels is explained in the following sections.

Operation

Importing PACs
The current version of AgentBuilder does not allow you to directly 
create PACs.  Instead, you must import the PACs from classes 
defined in object models. To import PACs, select the Import menu 
item from the File menu. Figure 50 shows the Import Dialog.

The Import Dialog consists of two sections: the Available Classes 
panel and the Selected Classes panel. To import PACs, you must 
first select an object model in the Available Classes panel. Once an 
object model is selected, the dialog will display the names of the 
classes that have been defined in the selected object model.
1 – 93



Chapter 1: Agent Construction Tools
The contents of the Object Model pull-down menu is a complete 
listing of all defined ontologies in the user’s repository. You have 
several ways to select classes to be added to the list in the Selected 
Classes panel. The first method is to select a class in the list and 
then click on the Add button. If you need to select multiple classes, 
you must hold down the Control key on your keyboard while 

Figure 49. PAC Editor
1 – 94



Chapter 1: Agent Construction Tools
selecting the classes. Once all of the classes have been selected, 
click on the Add button. If you want to add all of the classes listed, 
you can click on the Add All button. You can now select a different 
object model and continue to add classes as described above.

You can delete classes listed in the Selected Classes panel at any 
time. To do this, first select the classes to be deleted. Then, click on 
the Delete button. The selected class will then be deleted from the 
list.

When you are finished adding classes to the list, you must click on 
the OK button. Clicking on the Cancel button will cancel the 
import operation. If the OK button has been pressed and there were 

Figure 50. Import Dialog
1 – 95



Chapter 1: Agent Construction Tools
classes listed in the Selected Classes panel, then the selected 
classes will be converted into PACs. The new PACs will be dis-
played in the Defined PACs panel. If you cannot see the Defined 
PACs panel, make sure that the PACs radio button in the Panel 
Options panel of the PAC editor is selected.

Packages and Short Names 
The Pac Editor supports java package naming conventions, if you 
are unfamiliar with  Java package naming, see Sun Microsystem’s 
documentation. Each class that is imported as a PAC is given a 
unique short name by the PAC Editor.  This means when importing 
a class with a base class name of another class, it is assigned a name 
other than its class name, typically the PAC Editor adds a %2 after 
the class name. 

For example, if you import the class com.company.Container and 
issue a Save it will be given the short name of Container.  This 
means that everywhere in the agency manager where Container 
appears, it is actually referring to com.company.Container.  If a 
class tool.util.Container is imported and saved, the PAC Editor 
gives the class a new short name of Container%2 (with some input 
from the user as described below).  Consequently the user is able to 
determine the difference between the two using the percent sign.  If 
you delete the com.company.Container PAC, the short name will 
NOT be released.  All short name assignments are permanent, with 
the exception described below.  Therefore, unless a remapping is 
done, the old references to the Container short name are still refer-
encing the com.company.Container class. 

When the user has imported a new PAC with a potential short name 
collision and then issues a Save, a dialog is displayed to inform and 
query the user.  This dialog, shown in Figure 51, allows the user to 
choose whether to map the class to an existing short name or allow 
the tool to create a new short name.  By selected an existing short 
1 – 96



Chapter 1: Agent Construction Tools
name the user is remapping all usages in the rules, commitments, 
instances and actions to this new class.  This remapping is normally 
only appropriate when a class has been renamed or the package has 
changed. 

Viewing Defined PACs
To view the properties of a defined PAC, select the PAC in the 
Defined PACs list. Selecting a defined PAC from this list will cause 
the PAC Properties panel to display information about the selected 
PAC. The selected PAC's name, description, package, and ontology 
will be displayed. To view attributes or methods simply click the 
appropriate button and an attribute or methods list will appear in a 
dialog box. 

Deleting a Defined PAC
You can use the Defined PACs panel to delete any of the defined 
PACs. To do this, you must first select the PAC to be deleted. Then, 
click on the Delete button. Clicking on the Delete button will 
remove the selected PAC from the list.

Figure 51. Dialog for Handling Short Names
1 – 97



Chapter 1: Agent Construction Tools
Updating PACs
On occasion you will need to update a PAC from an ontology. The 
PAC Editor provides a way to update the list of defined PACs.  Fig-
ure 52 shows the Update Dialog used to update defined PACs. 

The Update Dialog is accessed from the File menu's Update menu 
item. The dialog contains a PACs panel, which lists all the PACs 
associated with the agent. To update the defined PACs in the 
Update Dialog, select the PACs you wish to update. Holding the 
Ctrl key while clicking on the PACs, will allow you to make multi-
ple PAC selections. If you want to update all of the PACs listed, 
click the Select All button. Once the PACs that need to be updated 
are selected, you need to click on the OK button.

Any of the defined PAC's whose object models were updated will 
now display the updated information.

Defining PAC Instances
Once you have defined a PAC, you can define PAC Instances. To 
define a PAC Instance, select the PAC you want to instantiate. All 
other items in the Instance Properties panel are optional for defin-
ing a PAC Instance. To specify a name for the PAC Instance, type 
the name into the Name text field. To add the name to the PAC 

Figure 52. PAC Update Dialog
1 – 98



Chapter 1: Agent Construction Tools
Instance, you must either press the Enter key on your keyboard 
while the cursor is in the Name text field, or click on the Enter but-
ton next to the Name text field. You can also type the description of 
the PAC Instance in the Description text area. 

Once a PAC is selected, you are given the option of defining the 
PAC Instance as an Initial PAC Instance. This is done using the Ini-
tial PAC Instance checkbox. If the Initial PAC Instance checkbox is 
selected, the Specify Constructor button will be enabled. A neces-
sary condition for defining an initial PAC Instance is that its con-
structor be selected and that all of its constructor parameters be 
specified. 

Specifying Constructors for PAC Instances
To specify constructors for a PAC Instance click on the Specify 
Constructor button. Figure 53 shows the dialog that will appear.

The Constructor Dialog allows you to specify the constructor and its 
corresponding parameter values for various kinds of objects. The 
dialog consists of two sections: a Constructor Tree panel and a 
panel that switches between a Parameter panel and a Complex 
Parameter panel.

The Constructor Tree panel contains a hierarchical tree of the 
parameters. The tree nodes use the name(type) convention for 
labeling. The root node is labeled with the PAC Instance name and 
the PAC Instance's PAC type. The children of the root node are the 
parameters for the PAC type's constructors. Any nodes with a 
folder icon indicate that the parameter is a complex object whose 
constructor needs to be specified.

The color of the nodes is also significant. Nodes whose values have 
not been specified have a red label; nodes whose value have been 
specified have a black label. An unspecified node recursively sets 
1 – 99



Chapter 1: Agent Construction Tools
its parent to be unspecified, so you can easily see which nodes have 
not been specified even when the tree is fully collapsed.

To specify a parameter value, you must first select the parameter to 
be specified. The panel below the Constructor Tree will change to 
either a Parameter panel or a Complex Parameter panel based on the 
type of node selected. Both the Parameter panel and the Complex 
Parameter panel contain a read-only Name and Type text field. The 
name and type of the selected node are shown in the read-only text 
fields. The difference between the two panels is that the Parameter 
panel allows you to specify a value for the selected parameter. To 

Figure 53. PAC Instance Constructor Dialog
1 – 100



Chapter 1: Agent Construction Tools
enter a value for the selected parameter, enter a value into the Value 
text field in the Parameter panel. To enter a null value for the 
parameter, type null into the value field. An empty string is con-
sidered to be a valid value and can also be entered into the value 
field. Once a value has been entered, you can press the Enter key 
on your keyboard while the cursor is in the Value text field, or the 
Enter button can be clicked. This will cause the value to be regis-
tered with the selected parameter. The entered value is shown in the 
tree once it has been registered.

The Complex Parameter panel contains a pull-down menu for spec-
ifying a constructor for the selected parameter. This is because the 
selected node type is a complex object.  You must select a construc-
tor from the Constructor pull-down menu.

If no constructors are listed, you can create a constructor for the 
complex object. To do this, go back to the Object Modeler and open 
the ontology that contains the complex object. You can then modify 
the object's properties and include one or more constructors. The 
object model must then be saved and the defined PACs updated.

Once a constructor is selected for the complex object, the tree node 
for the complex object will change. Any parameters that are in the 
selected constructor become children of the tree node. If the chil-
dren's types are all Java types, then you can assign values to the 
parameters as described above. Otherwise, if the children's parame-
ter types contain complex objects, the process of selecting a con-
structor and specifying values must be repeated. This process must 
be repeated until all leaves either contain Java types, or the selected 
constructors for complex objects have no parameters.

Once you have fully specified the constructor tree, you can click on 
the OK button to register the new parameter values. Clicking on the 
Cancel button will cancel any changes that were made to the con-
structor tree.
1 – 101



Chapter 1: Agent Construction Tools
Adding a PAC Instance
Once a PAC Instance has been defined, the PAC Instance can be 
added to the list of Defined Instances. If the Add button in the 
Defined Instances panel is disabled, then the PAC Instance has not 
been completely defined. Check to make sure that a PAC has been 
selected. If the PAC Instance is checked to indicate that it is an Ini-
tial PAC Instance, make sure the constructor and its parameters 
have been fully specified.

Once the Add button is enabled, you can add the PAC Instance to 
the list of defined PACs. Clicking on the Add button will add the 
PAC Instance to the list. Notice that the Instance Properties panel is 
cleared and the text field in the Defined Instance panel updated to 
reflect that a new PAC Instance has been defined.

Viewing Defined PAC Instances
To view the properties of a defined PAC Instance, select the PAC 
Instance in the Defined Instances list. Selecting a defined PAC 
Instance will cause the Instance Properties panel to display infor-
mation about the selected PAC Instance. The selected PAC 
Instance's name, description, PAC and Initial PAC Instance status 
will all be displayed. If the PAC Instance is an Initial PAC Instance, 
you can view the specified constructor by clicking on the Specify 
Constructor button (see Figure 54).

Editing a PAC Instance
To edit a PAC Instance, follow the above instructions for viewing a 
defined PAC Instance. Once the PAC Instance is loaded into the 
Instance Properties panel, you can modify the PAC Instance. When 
finished modifying the PAC Instance, the PAC Instance can be 
added to the list of Defined Instances as described above. Note that 
if the modified PAC Instance has the same name as the original 
PAC Instance, the modified PAC Instance will overwrite the origi-
nal PAC Instance. If the modified PAC Instance has a different 
1 – 102



Chapter 1: Agent Construction Tools
Figure 54. Viewing PAC Instances
1 – 103



Chapter 1: Agent Construction Tools
name, the PAC Instance will be added to the list in the same manner 
as a new instance.

Deleting a Defined PAC Instance
From the Defined Instances panel, you can delete any of the defined 
PAC Instances. To do this, first select the PAC Instance to be 
deleted. Then, click on the Delete button. Clicking on the delete 
button will delete the selected PAC Instance from the list.

Creating Java Instances
The PAC Editor also supports the construction of Java Instances. 
Java Instances are used in the Rule Editor in the construction of pat-
terns. To specify a Java Instance, you must select a Java type for the 
instance.  Like PAC Instances, everything else in the Java Instance 
Properties panel is optional. Java types include some non-primitive 
types, which are Arrays, Enumeration, Hashtable, Object, and Vec-
tor. To specify a name for the Java Instance, type the name into the 
Name text field. To add the name to the Java Instance, you must 
either press the Enter key on your keyboard while the cursor is in 
the Name text field, or click on the Enter button next to the Name 
text field. You can also type in a description of the Java Instance in 
the Description text area.

Once a Java type has been selected, you are given the option to 
make the Java Instance an Initial Java Instance. This is done using 
the Initial Java Instance checkbox. The Initial Java Instance check-
box will be disabled for non-primitive java types. If the Initial Java 
Instance checkbox is selected, the text field and the Add button 
adjacent to the checkbox are enabled. The text field is used to enter 
a value for the Java Instance. Once a value has been entered in the 
text field, you can either press the Enter button while the cursor is 
in the text field or click on the Add button.
1 – 104



Chapter 1: Agent Construction Tools
Adding a Java Instance
Once a Java Instance has been defined, the Java Instance can be 
added to the list of Defined Java Instances. If the Add button in the 
Defined Java Instances panel is disabled, then the Java Instance has 
not been completely defined. Check to make sure that a Java type 
has been selected. If the Java Instance is checked as an Initial Java 
Instance, ensure that a value has been specified.

Once the Add button is enabled, you can add the Java Instance to 
the list of Defined Java Instances. Clicking on the Add button will 
add the Java Instance to the list. Note that the Java Instance Proper-
ties panel is cleared and the text field in the Defined Java Instance 
panel updated to show that a new Java Instance has been defined.

Viewing Defined Java Instances
To view the properties of a defined Java Instance, you must select 
the Java Instance in the Defined Java Instances list. Selecting a 
defined Java Instance will cause the Java Instance Properties panel 
to display information about the selected Java Instance. The 
selected Java Instance's name, description, Java type and Initial 
Java Instance status will be displayed. If the Java Instance is an ini-
tial Java instance, the text field will display the value assigned to 
the Java Instance (see Figure 55).

Editing a Java Instance
To edit a Java Instance, follow the instructions for viewing a 
defined Java Instance. When the Java Instance is loaded into the 
Java Instance Properties panel, you can modify the Java Instance. 
When finished modifying the Java Instance, the Java Instance can 
be added to the list of Defined Java Instances as described above. 
Note that if the modified Java Instance has the same name as the 
original Java Instance, the modified Java Instance will overwrite 
the original Java Instance. If the modified Java Instance has a dif-
ferent name, the Java Instance will be added to the list.
1 – 105



Chapter 1: Agent Construction Tools
Figure 55. Viewing Java Instances
1 – 106



Chapter 1: Agent Construction Tools
Deleting a Defined Java Instance
Using the Defined Java Instances panel, you can delete any of the 
defined Java Instances. To do this, you must first select the Java 
Instance to be deleted, then click on the Delete button. Clicking on 
the Delete button will delete the selected Java Instance from the 
list.

Saving
If you have modified the contents of the Defined PACs, PAC 
Instances or Java Instances, you must save the new or modified data 
to the currently loaded agent. To do this, select the Save menu item 
in the File menu. The Save menu item selection will save all PACs, 
PAC Instances, and Java Instances to the currently loaded agent.

Switching Windows
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools. To switch a different tool, select the tool you 
wish to switch to from the Windows menu list. The selected tool 
will then be brought to the front on your display.

Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool.  The Index menu item will display an index to the help 
system's contents.  The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit.  The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information.  The AgentBuilder Home 
Page menu item will display the home page for the AgentBuilder 
product. 
1 – 107



Chapter 1: Agent Construction Tools
Closing the PAC Editor
If you want to close only the PAC Editor and leave all of the other 
tools open, select Close from the File menu. If you have modified 
the list of defined PACs, PAC Instances, or Java Instances, you will 
be prompted to save everything before closing the PAC Editor.

Exiting AgentBuilder
The File menu's Exit menu item allows the user to exit Agent-
Builder. This will close all of the tools that are currently open. If 
you have modified the list of defined PACs, you will be given an 
opportunity to save the modified PACs list before exiting the sys-
tem. 

Rule Editor
The Rule Editor tool is used to specify the behavioral rules used by 
the agent.  (Note: Throughout this section behavioral rules are sim-
ply called rules).  Rules are the basic control mechanism for Agent-
Builder agents; they determine how the agent responds to external 
and internal stimuli.  Each rule consists of a set of conditions and 
the desired actions or mental changes that will occur when those 
conditions are met.  The set of conditions is sometimes referred to 
as the rule's the left-hand side, or LHS; the actions and mental 
changes are the rule's right-hand side, or RHS.  The Rule Editor has 
separate panels for constructing the two sides of a rule.

The Rule Editor allows you to create two different types of condi-
tions for the left-hand side of a rule.  One type of condition is based 
upon external events and is termed a message condition.  A mes-
sage condition is a test performed on any new messages arriving in 
the agent's input buffers (e.g., comparing the name of the message 
sender against an expected sender name).  The second type of con-
dition is based upon the agent's internal state and is termed a mental 
1 – 108



Chapter 1: Agent Construction Tools
condition.  A mental condition is a test performed on beliefs in the 
mental model of the agent.

Patterns on the left-hand side of a rule generally consist of a combi-
nation of operators, variables, constant values, and references to 
named instances in the mental model.  Most variables will bind to 
all instances of a specified type in the mental model.  For example, 
assume ?i is the name of an Integer variable.  In the pattern (?i 
>= 4) the variable ?i will bind to every Integer instance in the 
mental model and the value of each binding will be used in the 
comparison.  In contrast, a named instance variable is a special 
type of variable which will bind only to a named instance with the 
specified name and type.  For example, the pattern ( currentCount 
>= 4 ) contains the named instance variable currentCount, which 
can bind only to the named instance currentCount in the mental 
model.  A named instance variable is similar to a global variable in 
that it can be used in any of the agent's rules and will always bind to 
the same instance in the mental model.

The following example illustrates the difference between the two 
types of variables, using a trivial mental model with three Integer 
beliefs.

Mental Model
Integer<width>  8

Integer<length>  3

Integer<currentCount> 5

Rule 1
IF ( ?i >= 4) 

THEN ( DO SystemOutPrintln( "Rule 1 Fired." ) 

Rule 2
IF ( currentCount >= 4) 
1 – 109



Chapter 1: Agent Construction Tools
THEN ( DO SystemOutPrintln( "Rule 2 Fired." ) 

In Rule 1 the Integer variable ?i will bind to each of the Integer 
values in the mental model and each value will be compared to 4.  
Rule 1 will fire twice: once with ?i bound to 8, then once with ?i 
bound to 5. The binding of ?i to 3 does not satisfy the pattern in 
Rule 1 so the rule will not fire with that binding.  In Rule 2 the 
named instance variable currentCount will bind to the value 5 from 
the currentCount named instance (which satisfies the pattern) and 
so Rule 2 fires once. 

Technically there's a difference between a named instance and a 
named instance variable: a named instance is part of the mental 
model (i.e., it's a belief), but a named instance variable is a compo-
nent of a pattern in a rule.  In some situations it's important to 
understand this distinction.  It's possible (and fairly common) for a 
pattern in a rule to refer to a named instance which does not always 
exist in the mental model.  Adding a named instance variable to a 
pattern in a rule does not guarantee that the associated named 
instance will be present in the mental model.

For example, consider the Print rule of Example Agent 3 in the 
AgentBuilder User’s Guide.  The second IF pattern in that rule con-
tains a Boolean named instance variable named Ready_to_print: 

( Ready_to_print EQUALS true )

The Ready_to_print named instance variable refers to an instance 
that does not exist in the agent's mental model until it gets asserted 
during execution, by the Connect rule.  Even though at the start 
there is no instance named Ready_to_print in the mental model, the 
Print rule does contain a Ready_to_print named instance variable.  
This pattern evaluates to true only if the Ready_to_print instance 
exists in the mental model and has the value true.  The pattern eval-
uates to false if the mental model does not contain a named instance 
that matches the named instance variable in the pattern.  In this 
1 – 110



Chapter 1: Agent Construction Tools
example, the Print rule is prevented from firing until the 
Ready_to_print instance is found in the mental model.

When the Connect rule is fired it performs the mental change:
( ASSERT ("Ready_to_print" true) )

This is the mental change that actually creates the Ready_to_print 
instance and assigns it a name and a value.  After this instance has 
been asserted into the mental model the pattern for the Print rule 
(shown above) will evaluate to true and the Print rule will be acti-
vated.

A named instance variable is similar to a global variable in that it 
can be used in any of the agent's rules and will always bind to the 
same instance in the mental state.  In the previous example with the 
currentCount named instance, several rules could have patterns 
that refer to currentCount and all of them would access the same 
value each cycle.

For the right-hand side of a rule, the Rule Editor allows you to spec-
ify the  actions that occur when the rule's conditions are satisfied. 
Actions can be created so that they affect the agent's mental model 
of the external world.

Overview
The Rule Editor is divided into two major panels; one panel for 
editing the left-hand side of a rule and one panel for editing the 
right-hand side. The editor for the left-hand side of the rule is 
referred to as the LHS editor; the editor for the right-hand side is 
referred to as the RHS editor.

The Rule Editor contains a menu bar with four items: File, Edit, 
Windows and Help.  The File menu allows you to open (i.e., load 
and start editing) previous rules as well as save the current one.  
Selecting File  New  New Rule creates a completely new rule, 
1 – 111



Chapter 1: Agent Construction Tools
or selecting other items under File  New will clear selected sec-
tions in the existing rule.  For example, choosing File  New Con-
dition causes the condition accumulator line to be cleared.

The main features of the Rule Editor are the accumulator text fields 
and the pattern lists. Each editor has accumulator text fields; these 
are single-line text fields with a New and Add button directly 
below them. The accumulators are used to accumulate the compo-
nents of arbitrarily complex conditions or action expressions. The 
pattern lists are at the middle and bottom of the LHS editor; the 
action/mental change list is at the bottom of the RHS editor.

A rule is made up of individual patterns which are built up one at a 
time in the accumulator line and then added to the lists.  By utiliz-
ing the pull-down menus as well as context sensitive pop-up menus, 
you can construct complex expressions as desired.  Several of the 
dialogs used in constructing the rule use a tree paradigm.  In addi-
tion, the Up and Down buttons at the right side allow you to change 
the ordering of individual lines.  Thus it's easy for you to rearrange 
ordering of patterns (or actions or mental changes) within the rule.1

Rule Properties
Edit Properties allows the user to access the rule properties. The 
two basic parts of the Rule Properties dialog are the name of the 
rule and the rule description.  There are few constraints on the name 
of a rule; only that it be unique within the rule set and that it not use 
hidden characters.  You're encouraged to choose descriptive rule 
names; you may even find that descriptive phrases work well as 
rule names.  The description window allows you to add a descrip-

1.A complete description of building complex patterns using the accumulator is 
described in “Building Complex Expressions” on page 8.
1 – 112



Chapter 1: Agent Construction Tools
tion to accompany the rule.  No size limitations are imposed, but 
generally only a few sentences are required.

LHS Editor
Figure 56 shows the LHS Editor.  There are three main panels: the 
Conditions panel, the message conditions pattern list and the mental 
conditions pattern list. 

The Conditions panel is composed of two pull-down menus and 
three pop-up dialogs, an accumulator, a New button, and Add but-
ton, a Message Conditions panel, and a Mental Conditions panel. 
The Operators menu is common to all panels in both the LHS and 
RHS editors, but the items available in each Operators menu will 

Figure 56. Rule Editor LHS
1 – 113



Chapter 1: Agent Construction Tools
differ depending on the panel. In the Conditions panel, the Opera-
tors menu contains various relations and pattern modifiers that are 
useful in patterns. The operator elements in this menu fall into sev-
eral different categories shown below. See “Operators and Pat-
terns” on page 301 for a detailed description of the operations.

• equality relations (EQUALS, NOT_EQUALS) 
• boolean relations  (AND, OR, NOT) 
• binding relation  (BIND) 
• quantified relations (FOR_ALL, EXISTS) 
• numerical relations (<=,<, !=, =, ...) 
• string functions  (concat, substring, ...) 
• arithmetic functions    (+, -, *, /) 
• mathematical functions  (tan, arctan, cos, arccos, sqrt, ...) 
• miscellaneous functions (SET_TEMPORARY)

The Values menu allows you to construct an instance of any Java 
type, a KQMLMessage type, a Time type, or a Class type and insert it 
into the current pattern. This is useful when you want to specify a 
comparison against a constant value. For example, if you want to 
test whether a field in an object is less than 4, you could specify the 
constant value (i.e., 4, probably as an integer or float) in the Val-
ues menu.

For the Java types, you will be presented with a dialog for entering 
a literal value.  For the KQMLMessage, TIME and Class type, the user 
is present with a specific dialog for entering each of the aforemen-
tioned types.

There are three different pop-up dialogs. The first is the New Vari-
able dialog. This dialog allows you to construct new variables that 
will be available for use in patterns.Figure 57 shows the New Vari-
able dialog. To create a new variable, you would first select the 
1 – 114



Chapter 1: Agent Construction Tools
PACs or Java Types radio button. Once a radio button has been 
selected, a list of available variables types will be displayed. You 
can then select a PAC or Java type. Once a variable type has been 
selected, the focus will be transferred to the Variable Name text 
field. Type in a name for the new variable and select the Add but-
ton. Selecting the Add button will add the new variable to the list at 
the bottom of the dialog.

The creation of a KqmlMessage variable differs in that a different 
pop-up dialog is displayed when you click on the Add button. You 
will be shown a Binding Dialog for the KqmlMessage variable, as 
shown in Figure 58. You can specify the KQML message binding 
to be an incoming or mental model message by using the pull-down 

Figure 57. New Variable Dialog
1 – 115



Chapter 1: Agent Construction Tools
menu. Once selected, you can click on the OK button so that the 
KqmlMesage variable can be added to the list of new variables and 
the dialog can be dismissed.

The Rule Editor supports the creation of an Array variable. The 
Array type is listed in the Java Types panel. Like the creation of the 
KqmlMessage, a different pop-up dialog is displayed when you click 
on the Add button. You will be shown an Array Dialog for the Array 
variable, as shown in Figure 59. You can specify the array type by 
selecting a type from the list. Notice that you will be able to create 
an array of Java types, Vector, Hashtable, Enumeration, and PAC 
types. Once selected, you can click on the OK button so that the 
array variable can be added to the list of new variables and the dia-
log can be dismissed.

The Defined Variables dialog allows you to select previously 
defined variables for use in a message or mental pattern. Figure 60 
shows the Defined Variables dialog. For any array types in the Java 
Types panel, the array variable will only have attributes for the 
component type and length. This dialog also allows you to cast the 
selected variable to a different type. To cast a selected variable, 
select from the Casting Type combo box. The combo box contains a 
list of all available PACs and Java types. Once a casting types has 
been selected, the type of the selected variable will be updated in 
the dialog. You can no click on the OK button to add the selected 
variable to the Condition panel's accumulator text field.

Figure 58. KQML Message Binding Dialog
1 – 116



Chapter 1: Agent Construction Tools
Figure 59. Array Dialog

Figure 60. Defined Variable Dialog
1 – 117



Chapter 1: Agent Construction Tools
The Instances pop-up dialog allows you to specify conditions based 
on named instances in the mental state. Figure 61 shows the 
Instances dialog.

Like the Defined Variables dialog, the Instances dialog allows you 
to cast named instances to an available PAC or Java type. To cast a 
named instance, use the same method as was described in the 
Defined Variables dialog.

The New button allows the user to create a new message or mental 
condition. The same can also be done by selecting File  New  
New Condition. Pressing the Add button will cause AgentBuilder 
to check to see if the pattern in the accumulator is valid. If the pat-
tern is valid, it will be added to either the Message Conditions list or 
the Mental Conditions list.

Figure 61. Instances Dialog
1 – 118



Chapter 1: Agent Construction Tools
RHS Editor
Figure 62 shows the RHS Editor. There are two main panels: the 
Actions panel and the Defined RHS Elements panel. The created 
patterns from the actions panels supply the Defined RHS Elements 
list with action statements. 

Action Panel
The Actions panel is composed of four pull-down menu, four pop-
up dialogs, an accumulator line, a New button and an Add button. 
By using these dialogs and menus, you can create arbitrarily com-
plex arguments and mental change statements.

Figure 62. Rule Editor (RHS)
1 – 119



Chapter 1: Agent Construction Tools
The Operators pull-down menu allows access to various functional 
operators.  This menu supplies a subset of the operators in the LHS 
operator lists.  These operators (along with their operands) can be 
used as arguments for actions. These operators include:

• string functions 
• arithmetic functions
• mathematical functions
• miscellaneous functions (ASSERT, RETRACT, 

SET_TEMPORARY)

The Actions pull-down menu allows access to the user-defined 
actions. The user-defined actions must first be defined in the Action 
Editor before they can be used in the Rule Editor.  Please see the 
Action Editor section for more information about defined actions.

The built-in Actions pull-down allows access to the system-
defined actions supported by the Run-Time System.  For a more 
detailed description of the built-in actions please see “Intrinsics” on 
page 287.

There are three key components which are identical to their coun-
terparts in the Conditions panel in the LHS editor:  the Values pull-
down menu, the Defined Variables dialog, and the Instances dialog. 

The New Object dialog is used when defining new instances of 
PACs or Java types. Figure 63 shows the New Object dialog. To 
specify a new object, you must first select the type of object that 
you want to create. Once you have selected a type, you must then 
select the constructor to use for that type. The new object will then 
be inserted into the action pattern. Any parameters for the new 
object will need to be specified in the action pattern. The New 
Object dialog is used when specifying a parameter to an action that 
needs to be built at rule execution time.
1 – 120



Chapter 1: Agent Construction Tools
The Return Variable dialog is used to rename any automatically 
generated return variable. Figure 64 shows the Return Variable dia-
log. Return variables are automatically created for any private 
action, built-in action, or method that returns something. To change 
the name of a return variable, you first select the return variable in 
the Action pattern's accumulator. Then click on the Return Vari-
able button to pop-up the dialog. Once the dialog is displayed, you 
select the type of the return variable that you are replacing. Once 
the type is selected, you can enter a variable name. Clicking on the 
OK button will then rename the selected return variable.

Figure 63. New Object Dialog
1 – 121



Chapter 1: Agent Construction Tools
The New button allows you to create an action. You can also do this 
by selecting File  New  New Action. The Add button will 
check to see if the pattern in the accumulator is valid. If the pattern 
is valid, it will be added to the Defined RHS Elements list.

Defined RHS Elements Panel
The last panel in the RHS editor is the Defined RHS Elements panel 
which contains the list of private actions and mental changes on the 
RHS of the rule. The Up and Down buttons on the right of the panel 
can be used to rearrange the elements in the list, and the Delete but-
ton can be used to delete a selected element.  It is crucial to main-
tain the integrity of the ordering within this list. Actions, except for 
the built-in SendKqmlMessage, will always be executed before the 
mental changes are performed. You may change the ordering 

Figure 64. Return Variable Dialog
1 – 122



Chapter 1: Agent Construction Tools
within the list of actions, but if any action uses the returned value 
from another action, it must follow that action in the list. For exam-
ple, if action Foo returns an Integer which is to be used as an argu-
ment for action Bar, then Foo must be listed ahead of Bar in the 
Defined RHS Elements list; this will cause Foo to be executed first 
and the return value will then be available for use in Bar.

Rule Editor Operations

Creating a New Rule 
Constructing a new rule is relatively simple.  Select the File New 

 New Rule menu item.  This clears all elements from the Rule 
Editor. If a rule was currently loaded, and it was modified, a dialog 
will be displayed asking if the current rule is to be saved.  Figure 65 
shows the dialog that will be displayed in creating a new rule.

The Rule Properties Dialog allows you to provide a name and 
description for the new rule. This information can later be changed 
by selecting the Properties menu item from the Edit menu. Once 
the information for the rule has been entered, select the OK button 
to apply the changes.  Selecting Cancel button will cancel any 
changes to the rule's name or description. If this dialog was dis-
played as a result of selecting the New Rule menu item, selecting 
Cancel will defer naming the new rule. 

Figure 65. Rule Properties Dialog
1 – 123



Chapter 1: Agent Construction Tools
Loading an Existing Rule
To load an existing rule, select File  Open.  A list of the rules 
previously defined for the agent will appear.  Load the existing rule 
by either double clicking on its name or by clicking on its name and 
clicking on the OK button. Either selection method causes the rule 
to be loaded into the editor.

Constructing a Simple Mental Condition
The first step in constructing a simple mental condition is to choose 
the operator to be used, usually the EQUAL or NOT_EQUAL operators.  
Next, specify the operands that are to be compared, starting with 
the operand to the left of the operator.  For example, a mental con-
dition might test for equality between an attribute in a PAC variable 
and a string constant.  Each operand can be an instance, a defined 
variable, a constant value, or the result returned from a function 
(e.g., the concatenation of two strings).  To specify an operand, 
choose the correct dialog and select the desired element.  Finally, 
specify the operand on the right side of the operator.  Figure 66 
shows the Values dialog where the string constant is defined.  Enter 
the desired string and click on OK. This causes the string value to 
be entered into the current pattern. When the pattern is complete, 
click on Add to add the current pattern to the list of mental patterns.

Figure 66. String Value Dialog
1 – 124



Chapter 1: Agent Construction Tools
Direct Method Invocation
Directly invoking methods allows you to bypass creating a private 
action for a method you want to use in an action pattern. To use 
direct method invocation, you can either pop-up the Defined Vari-
able or Instances dialog. In both dialogs, each non-primitive type is 
represented with a folder icon, and will contain zero or more child 
nodes. The child nodes represent field attributes of the type as well 
as any methods, with attributes listed first. To specify a method to 
be invoked, you must select the desired method and click on the OK 
button. The method invocation will then be inserted into the action 
pattern being built. Now, actions need only be created when you 
want to use the private action to create an initial commitment. Fig-
ure 67 shows this process.

Figure 67. Direct Method Dialog
1 – 125



Chapter 1: Agent Construction Tools
Return Variable Naming
Anytime a method invocation or a built-in action that has a return 
variable is chosen, a Return Variable Name Dialog is displayed, as 
shown in Figure 68.  You can either name the variable or accept a 
default name provided by AgentBuilder.  Choosing OK, accepts the 
default name.  There is no way to rename this variable after this 
operation, although you can easily recreate a pattern.  The alterna-
tive is to type in the name you want the variable to have.  If you 
enter a duplicate variable name, then an error dialog will be dis-
played and you must re-enter the name.

Using a Predicate Method
Predicate methods (i.e., methods that return a Boolean value) 
defined in the PACs may be used to construct mental conditions.  
The available predicate methods are displayed in the Defined Vari-
ables and Instances dialogs in the same way that the PAC attributes 
are displayed.  Click on the method name to select it, then click on 
OK to insert the predicate method into the current pattern.  After 
selecting the predicate method you'll need to specify values for any 
parameters required by the method. Figure 69 shows the format for 
the predicate methods on an example PAC in the Defined Variables 
dialog. 

Constructing an Action Statement
Constructing an action statement is straightforward.  Select the 
desired action from the Actions or Built-in Actions lists.  Next, spec-

Figure 68. Return Variable Name Dialog
1 – 126



Chapter 1: Agent Construction Tools
ify all parameters for the selected action. The Rule Editor automati-
cally creates a variable to hold the value returned by each action 
statement so that the returned value can be used as a parameter in 
other actions or in mental changes.  The tool adds these variables to 
the Defined Variables list so they can be selected for use in other 
RHS patterns.

Note: If an action has not been associated with an instance of a 
PAC, the ConnectAction built-in action must be executed first.  For 
example, if an action named Print has been defined to use the 
print(String) method on a PAC instance named myControlPanel-
Pac and the action has not been associated with the instance, Con-
nectAction(Print, myControlPanelPAC) must be executed before 

Figure 69. Predicate Methods in the Defined Variable Dialog
1 – 127



Chapter 1: Agent Construction Tools
Print is executed. The section, “PAC Editor” on page 92, provides 
more information about actions and PACs.

Building an Assertion with a New Object
As previously mentioned, an assertion adds a new instance of a 
class to the agent's mental model.  To specify an assertion, first 
select the ASSERT item in the Operators menu from the Actions 
panel. This causes a dialog to appear with a text field and a prompt. 
If you want to associate a name with the instance that will be 
asserted (e.g., you may want to assert a new Location instance 
named currentLocation), type the name into the text field and click 
OK.  If you're not interested in providing a name for the instance, 
just leave the text field blank and click OK to close the dialog.  
After the dialog is closed the assertion template, ASSERT(<>) will 
be added to the mental change accumulator.

Next, click on the New Object button, which will cause the New 
Object dialog to appear, as shown in Figure 70.  This allows you to 
select the class type for the instance.  Click on the name of a class to 
select it.  After you have selected a class type, select a constructor 
from the pull-down menu at the bottom of the dialog, then click on 
OK.  This inserts the new object into the mental change accumula-
tor.  At this point you must specify the parameters for the construc-
tor.  The parameters can be existing objects found in the Instances 
or Defined Variables dialogs, or they can be other new objects cre-
ated in the New Objects dialog.  It is possible to use new objects as 
parameters to constructors, actions or other functions. 

Closing the Rule Editor
You can close the Rule Editor by selecting the Close item in the 
File menu.  If necessary, AgentBuilder will ask you whether you 
want to save your changes or not.  By selecting Yes you can save 
1 – 128



Chapter 1: Agent Construction Tools
all of your changes since the previous save.  If you select No you'll 
revert to the rule configuration last saved. 

Figure 70. The New Object Dialog
1 – 129



Chapter 1: Agent Construction Tools
F. Protocol Manager. 
The Protocol Manager is shown in Figure 71. This tool allows you 
to create and view the set of protocols to be used with various agen-
cies. This tool gives you a high-level view of protocols. The Proto-
col Editor is used to define all of the properties needed to use a 
protocol with a specified agency.

Overview
The Protocol Manager has five menus: File, Edit, Tools, Windows 
and Help. The File menu allows you to create new protocols, close 
the Protocol Manager and shut down AgentBuilder. The Edit menu 
allows you to Cut, Copy, Paste and Delete a protocol. You can use 
the Tools menu to open the Protocol Editor for a selected protocol. 

Figure 71. The Protocol Manager
1 – 130



Chapter 1: Agent Construction Tools
The Windows menu allows you to quickly and easily switch 
between the various open AgentBuilder tools.

The protocol tree view allows you to view user-defined and system 
protocols. You can create and view any number of protocols. The 
system protocols in the protocol tree are displayed with red text 
labels. The red text labels signifies that the protocols are read-only 
and cannot be altered. A user's personal protocols are displayed 
with black text labels. When a protocol is selected in the left panel, 
the right panel displays general information about the protocol and 
includes a short textual description of the protocol as well as infor-
mation about where the protocol is located. Note that the divider 
between the protocol tree structure and the properties window can 
be moved horizontally to provide more viewing space for the proto-
cols.

Operation
Using the Protocol Tree 
The protocol manager uses the same tree structures found in other 
AgentBuilder tools The protocol manager has three levels in its tree 
structure. The highest level is the Protocols level, which contains 
repository folders, which in turn, contains the defined protocols. 
The repository folders are represented in the tree by a folder icon. 
The protocols are represented without an icon. Any protocols that 
read-only are displayed with red text labels.

Creating a New Protocol
A new protocol can be added to your user's repository folder by 
first selecting the user's repository folder. You would then select the 
New Protocol menu item from either the File menu or the reposi-
tory folder's pop-up menu. This will bring up the dialog shown in 
Figure 72. The properties of the protocol can be entered into this 
dialog.
1 – 131



Chapter 1: Agent Construction Tools
Cutting, Copying and Pasting a Protocol 
Protocols can be cut, copied, or pasted. There are two ways to use 
the clipboard functions for a protocol. The first way is to use the 
Edit menu's Cut, Copy and Paste menu items. The other method is 
to use the protocol's pop-up menu for cut and copy, and the reposi-
tory folder's pop-up menu for paste. Whichever method is used, a 
protocol must first be selected before a cut or copy operation. For 
the paste operation, a user or system repository folder must be 
selected. Invalid selections will be ignored. If the folder being 
pasted into already contains the name of the protocol being pasted, 
the protocol to be pasted will recursively have CopyOf prepended to 
its name.

Modifying Protocol Properties 
The general protocol properties can be modified by right-clicking 
on the appropriate protocol in the tree structure and selecting the 
Properties… menu item from the pop-up menu.

Deleting Protocols 
To delete a protocol from the protocol tree structure, simple select 
the desired protocol and choose Delete from the Edit menu or from 

Figure 72. Protocol Properties Dialog
1 – 132



Chapter 1: Agent Construction Tools
the pop-up menu. This will display a confirmation dialog before 
deleting the selected protocol.

Launching Protocol Tools 
You can launch the Protocol Editor tool from the Tools menu. It is 
necessary to first select the desired protocol before launching the 
Protocol Editor. If you launch the Protocol Editor without first 
selecting a protocol, AgentBuilder will remind you by displaying a 
dialog asking you to select a protocol.

Switching AgentBuilder Windows 
To switch between different AgentBuilder windows, select the 
desired window in the Windows menu. This will bring the selected 
window to the foreground.

Closing Protocol Manager 
To close the protocol manager, select the Close item under the File 
menu. This will close the protocol manager window and the Proto-
col Editor, if it is still open. If you have any unsaved changes in the 
Protocol Editor, you will be given a chance to save them.

Exiting AgentBuilder 
To exit from AgentBuilder, select Exit from the File menu. Agent-
Builder will then display a confirmation dialog before actually exit-
ing the system.

Protocol Editor 
The Protocol Editor tool is used to modify the state diagram and 
roles that are associated with a particular protocol. The Protocol 
Editor provides a a dialog for creating and modifying roles, a draw-
ing canvas for graphically defining states and transitions and a dia-
log for viewing the protocol's state table.
1 – 133



Chapter 1: Agent Construction Tools
Overview 
The Protocol Editor contains a menu bar with file items: File, Edit, 
Diagram, Windows and Help. The File menu allows you to open 
protocols and save the current protocol. You can also save the pro-
tocol description to a file. The File menu also allows you to close 
the Protocol Editor and shut down AgentBuilder. The Edit menu 
allows you to cut, copy, and paste states. Using the Delete menu 
item you can delete states and transitions. The Diagram menu 
allows you to modify the current state diagram by adding new 
states or transitions. The dialogs for viewing the state table and the 
roles can also be accessed using the Map menu items. The Map 
menu also provides menu items for clearing the state diagram and 
refreshing the display. A sample state diagram is shown in Figure 
73.

Operation

Creating a New State 
You can create a new state by right-clicking on an unoccupied 
region of the state diagram and selecting New State from the pop-
up menu. This will display the state properties dialog that will allow 
you to enter a name, description, and state type. The state properties 
dialog is shown in Figure 74. The state type provides a graphical 
way of indicating which state is the initial state, which states are 
final states, and which states are normal states. Only one state is 
allowed to be an initial state. You will receive an error dialog if you 
attempt to set more than one state as an initial state. The tool doesn't 
require you specify an initial and final state. The state types provide 
a graphical enhancement of the state diagram view. Clicking the 
OK button will create a new state on the state diagram. This state is 
represented by a circular node with the state's name as its label. 
Note that the point on the state diagram where you right-click is the 
location where the state is placed. If you decide not to create a new 
1 – 134



Chapter 1: Agent Construction Tools
state, you can click on the Cancel button and the state diagram will 
remain unchanged. You can also use the Map menu to create a new 
state in a similar manner.

Cutting, Copying and Pasting a State 
States can be cut, copied, or pasted. There are two ways to use the 
clipboard functions for a concept. The first way is to use the Edit 
menu's Cut, Copy and Paste menu items. The other method is to 
use the state node’s pop-up menus for cut and copy, and the Map's 
pop-up menu for paste. Whichever method is used, a state must first 
be selected before a cut or copy operation. If the map being pasted 

Figure 73. State Diagram
1 – 135



Chapter 1: Agent Construction Tools
into already contains the name of the state being pasted, the state 
being pasted will recursively have CopyOf prepended to its name.

Creating a New Transition 
You can create a new transition by right-clicking on any unoccu-
pied region of the state diagram and selecting the New Transition 
menu item. Once selected, the cursor will change to a cross-hair 
cursor and you can then click on the starting state and drag the cur-
sor to the ending state. Once a valid starting state and ending state 
have been selected, the Transition Properties dialog will be dis-
played as shown in Figure 75. The Properties Dialog allows you to 
specify a name for the transition and an optional description. 

The rest of the dialog allows you to specify the KqmlMessage that is 
used in the transition. The required KQML fields are the sender, 
receiver, performative, ontology, and content type. Since the 
sender and receiver fields are required, you must first have some 
roles defined before you can create any transitions. If no roles 
exists, you will see an error when trying to create a new transition 
(See Creating Roles below). Selecting an ontology will also load 
the selected ontology's objects into the Content Type combo box. 
For the content field, you can only enter a value if the selected con-

Figure 74. State Properties Dialog
1 – 136



Chapter 1: Agent Construction Tools
tent type is a Java primitive type. Entering a new values into the 
Reply-With combo box will automatically add the new entry to the 
In-Reply-To combo box. All entries will then be saved when the 
protocol is saved so that for any new transitions created, they will 
have the list of all Reply-With entries added. 

Clicking on OK will add the transition between the selected states. 
An arrowhead will be drawn with the arrow pointing towards the 
ending node. Clicking on Cancel will cancel the creation of the 
new transition.

Moving a State 
You can freely move a state node anywhere on the state diagram. 
This can be done by clicking on the desired state node and dragging 
the node to a new location. Transitions will adjust themselves auto-
matically to maintain the connection with the relocated state.

Moving Multiple States
You can move multiple states at a time. First, select the states you 
wish to move. To do this, hold the Control key down and select the 

Figure 75. Transition Properties Dialog
1 – 137



Chapter 1: Agent Construction Tools
states using the mouse. Once you have a group of states selected, 
hold the Control key down and drag one of the selected states to a 
new location. You will notice that all the selected states will move 
in relation to the mouse cursor. To deselect the states, simply click 
on the canvas. 

Deleting a State 
You can delete an existing state node by clicking on that node and 
selecting Delete from the pop-up menu. Likewise, a selected state 
can be deleted using the Delete item in the Edit menu. Note that 
when a state is deleted, all links to that state are also deleted.

Deleting a Transition 
You can delete an existing transition by selecting the transition and 
selecting Delete from the pop-up menu. You can also select Delete 
from the Edit menu with a selected transition.

Viewing and Altering State Properties 
You can view and modify the name, description and type of an 
existing state by selecting Properties… from the state's pop-up 
menu. The state properties dialog will then be shown, and you can 
modify any or all of the state's properties. Clicking on OK will com-
mit any changes that you have made to the state. Clicking on Can-
cel will revert the state to its original properties.

Viewing and Altering Transition Properties 
You can view and modify the name, description and KqmlMessage 
fields of an existing transition by selecting Properties… from the 
state's pop-up menu. The Transition Properties dialog will then be 
shown, and you can modify any or all of the transition's properties. 
Clicking on OK will commit any changes that you have made to the 
state. Clicking on Cancel will revert the state to its original proper-
ties.
1 – 138



Chapter 1: Agent Construction Tools
Viewing the State Table 
The state table is generated from the transitions in the state dia-
gram. If you currently have no transitions created, you will be given 
an error dialog and the state table dialog will be shown. Otherwise, 
the state table dialog will appear as shown in Figure 76. The state 
table dialog lets you see the important KQML message fields for 
each transition: sender, receiver, performative, content type and 
content. There is a combo box for selecting which role to view the 
state table. Currently, only the All Roles selection is supported.

Viewing Roles 
To view the roles that this protocol is using, select the Diagram  
Roles… menu item. This will display the Roles Dialog as shown in 
Figure 77. The Roles Dialog has two panels: the left panel lists the 
defined roles, and the right panel gives a description of a selected 
role in the left panel.  This dialog also contains a menu bar with a 
File and Edit menu. The File menu allows you to create a new role, 
and to close the dialog. The Edit menu gives you cut, copy, paste, 

Figure 76. State Table Dialog
1 – 139



Chapter 1: Agent Construction Tools
and delete functions for the role.  The Edit menu also allows you to 
bring up the properties dialog for a selected role.

Creating Roles 
Roles need to be created so that you can create transitions. To cre-
ate a new Role, select the File->New menu item.  The Role Proper-
ties dialog will be displayed and will allow you to specify the new 
role's properties. The Role Properties dialog is shown in Figure 
rolePropertiesDialog. The dialog will allow you to specify a name, 
description and instance number for the role. The instance number 
is specified by selecting the Instance combo box. The combo box is 
an editable combo box so that you can enter an integer number to 
specify the maximum number of instances allowed for the role.

Cutting, Copying and Pasting Roles 
The Edit menu items will allow you to cut, copy and paste roles. To 
cut or copy a role, you must first select the role from the left panel, 
then select Copy or Paste from the Edit menu. To paste a role that 
has been cut or copied to the clipboard, select the Paste menu item 
from the Edit menu. The role will then be added to the list of roles 

Figure 77. Roles Dialog
1 – 140



Chapter 1: Agent Construction Tools
in the left panel. If a role in the list already has the name of the role 
being pasted, the pasted role will recursively have CopyOf 
prepended to its name until it is unique.

Deleting Roles 
To delete a role from the list, you must first select the role, then 
select Edit  Delete. A confirmation dialog will be shown before 
the role is actually deleted. Once deleted, the role is removed from 
the list.

Viewing and Modifying Role Properties
To view a role's properties, you must first select the role in the list, 
then select Edit  Properties. The Role Properties dialog will 
then be displayed showing the selected role's properties. Once the 
dialog is displayed, you can modify any or all of the roles proper-
ties. Clicking on OK will commit changes made to the role's proper-
ties. Clicking on Cancel will cancel any changes that have been 
made to the role.

Saving a Protocol 
You can save a state diagram by selecting Save under the File 
menu. You can then close the Protocol Editor and return to it at a 
later time. The save action will save the states and transitions as 
well as their locations relative to each other.

Saving the Protocol to a File 
The state diagram can be saved to a text file by selecting File  
Generate Printable. Selecting this menu item will bring up a file 
dialog for saving a state diagram to a file. By default, the directory 
is set to the current working directory, and the filename is set to 
protocol-name.txt. The text file that is generated will contains a 
text description of the protocol's name and description as well as a 
description of every state and transition that make up the protocol.
1 – 141



Chapter 1: Agent Construction Tools
Clearing the Protocol 
If you wish to delete everything on the current state diagram and 
start again, you can do so by selecting Clear under the Diagram 
menu item or from the state diagram's pop-up menu. Note that this 
function will remove all states and transitions that have been 
entered. You will be presented with a confirmation dialog before 
actually clearing the state diagram. If you later decide that you liked 
the original state diagram and you have not yet saved the changes, 
you can just close the Protocol Editor or reload the Protocol Editor 
using the File  Open menu item.

Closing the Protocol Editor 
You can close the Protocol Editor by selecting the Close item in the 
File menu. If you have any unsaved changes, you will be given a 
chance to save them before the tool is closed. 

Role Editor 
The Role Editor is used to assign an agency's agents to roles in a 
particular protocol. Using the Role Editor, you can update any or all 
agents so that necessary rules can be generated for their assigned 
roles.

Overview 
The Role Editor contains a menu bar with five menu items: File, 
Edit, Options, Windows and Help. The File menu allows you to 
save the roles. From the File menu, you can also close the Role Edi-
tor and shut down AgentBuilder. The Edit menu allows you to view 
the properties of a selected role. The Options menu allows you to 
assign agents to a selected role, update a particular agent, or update 
all agents that belong to the currently loaded agency.
1 – 142



Chapter 1: Agent Construction Tools
The Role Editor is made up of two panels: the left panel is a listing 
of the roles for a particular protocol, and the right panel displays a 
description of a selected role. Figure 78 shows the Role Editor.

Operation

Viewing and Modifying Role Properties 
To view a role's properties, select the role in the left panel. The 
role's properties will then be displayed in the right panel. Alterna-
tively, you can also select the role, then select the Edit  Proper-
ties… menu item. Either way, you will see the Role Properties 
dialog as illustrated in Figure 79. The Role Properties dialog will 
display the role's name, description and maximum number of 

Figure 78. Role Editor
1 – 143



Chapter 1: Agent Construction Tools
instances allowed. Of these properties, only the role description can 
be modified.

The role's name and instance number cannot be modified in the 
Role Editor. The roles are created in the Protocol Editor. If changes 
need to be made to a particular role, the changes will have be made 
in the Protocol Editor, and the protocol will then have to be re-
imported into the Agency Manager.

Assigning Agents to Roles 
In order for a protocol to be successfully applied to an agency, each 
role must be assigned to one or more agents. The only exception is 
when a particular role is specified to have zero or more agents, in 
which case, assigning an agent is optional. To assign one or more 
agents to a role, you must first select the role from the left panel. 
Then, click on the Options  Assign Agent(s), and the Assign 
Agent(s) dialog will be displayed as shown in Figure 80. 

The role being assigned to an agent is at the top of the dialog. There 
are two main panels in the dialog: the Available Agents panel lists 
the agents that belong to the currently loaded agency. Also, buttons 
are provided in this panel for adding a selected agent from the list, 

Figure 79. Role Properties Dialog
1 – 144



Chapter 1: Agent Construction Tools
or adding all agents from the list. To add a single agent, first select 
an agent, then click on the Add button. The selected agent will then 
be added to the list in the Selected Agents panel. Clicking on the 
Add All button does not require the user to select the entire list.

The Selected Agents panel will first list any agents that have 
already been assigned to the selected role. Agents can be removed 
from the role by selecting the agent in the list, then clicking on the 
Delete button. Clicking on the OK button will set the changes made 
to the role. Also, a check will be done to make sure that the number 
of agents assigned to the role does not exceed the maximum num-

Figure 80. Assign Agent Dialog
1 – 145



Chapter 1: Agent Construction Tools
ber of instances allowed for the role. Clicking on the Cancel button 
will cancel any changes made to the role's assignment.

Updating an Agent 
Updating an agent will generate the necessary rules needed for the 
agent to fulfill its assigned role(s). An agent will need to be updated 
whenever the agent has been assigned to a role. To update an agent, 
select the Options  Update Agent… menu item. This will dis-
play the Update Agent dialog as shown in Figure 81. The dialog 
consists of a combo box that contains the agents for the currently 
loaded agency. Select the agent that you want updated, and click on 
the OK button. Clicking on the Cancel button will cancel the agent 
update.

Updating All Agents 
As a convenience, the Role Editor also allows you to update all 
agents for the currently loaded agency. Selecting the Options  
Update All Agents menu item will update all agents. Selecting the 
menu item will then generate the rules needed for each agent to 
fully implement each of its assigned roles.

Saving the Roles 
The roles can be saved by selecting Save under the File menu. You 
can then close the Role Editor and return to it at a later time. The 
save action will save the role assignments to each of the agents.

Figure 81. Agent Update Dialog
1 – 146



Chapter 1: Agent Construction Tools
Switching Windows 
To switch between different AgentBuilder windows, select the 
desired window in the Windows menu. This will bring the selected 
window to the foreground.

Closing the Role Editor 
To close the role editor, select the Close item under the File menu. 
This will close the role editor window. If you have any unsaved 
changes in the role editor, you will be given a chance to save them.

Exiting AgentBuilder 
To exit from AgentBuilder, select Exit from the File menu. Agent-
Builder will then display a confirmation dialog before actually exit-
ing the system.
1 – 147



Chapter 1: Agent Construction Tools
1 – 148



  
Action Editor
The Action Editor allows you to view, edit and create actions. An 
action is an association between an action name and a method on a 
PAC.  The action name may be the same as the method name or it 
may be different.  An action also contains lists of preconditions and 
effects which will automatically be added to any rule containing the 
action. The actions are optional, you can use direct method invoca-
tion instead. The Actions will be needed when you create Commit-
ments that need to invoke methods on PACs.

Overview 
You can open the Action Editor by selecting Action Editor from 
the Tools menu in the Agent Manager or selecting the Action tab 
in the Agent Manager. You can also double-click on an action in 
the Agent Manager Actions Panel to open the Action Editor. After 
opening the Action Editor, you can use the File menu to create a 
new action, save the current list of actions, close the Action Editor, 
and exit the system. The Edit menu allows you to delete actions 
from the defined actions list. The Windows menu lets you switch 
between other AgentBuilder tools that are open. The Help menu 
provides access to the AgentBuilder help system. The Action Editor 
is shown in Figure 1.

The Action Properties panel allows you to either create a new action 
or view a defined action. The Action Properties panel allows you to 
specify an action's name, description, PAC, PAC Instance and PAC 
method.

The Defined Actions panel allows you to add new actions to the list, 
or delete defined actions from the list.
 – 149



  
Operation

Creating an Action
If you want to create a new action, the Action Properties panel must 
be cleared. If an action is currently being worked on, you can select 
the New menu item from the File menu. Selecting the New menu 
item will prompt you to confirm that you want to create a new 
action.

To create an action, fill out the Action Properties panel. The action's 
name must be entered into the Name text field. You can either press 

Figure 1. Action Editor
 – 150



  
the Enter key on your keyboard while your cursor is in the Name 
text field, or click on the Enter button on the panel. Once an action 
name has been entered, the new action name will appear in the 
Defined Action text field. If the text in the Defined Action text field 
has scrolled out of view, you can click on the text field, and use the 
←, →, Home and End keyboard keys.

You can select a PAC from the <PAC> combo-box.  PACs that have 
been defined for the currently loaded agent will be loaded into the 
<PAC> combo-box. The selected PAC will be shown in the Defined 
Action text field.

The Method combo-box is dependent on the selection in the PAC 
combo-box. Once a PAC has been selected, the PAC's methods will 
be loaded into the <Method> combo-box. To complete the action 
definition, you must select a method. The selected method will then 
be shown in the Defined Action text field.

You can also specify a PAC Instance. If there are any PAC 
Instances that have been built from the currently selected PAC, they 
will show up in the PAC Instance combo-box. 

You can also enter a description for the action in the Description 
text area.

Adding an Action
Once an action has been completely defined, the Defined Action 
Add button will become enabled. At the minimum, an action must 
have a name, PAC, and method selected. To add the action shown 
in the Defined Action text field, the user must press the Add button.

Pressing the Add button will add the action in the Defined Action 
text field to the list of defined actions. The Action Properties panel 
will be reset so a new action can be defined, or so an existing action 
can be displayed.
 – 151



  
Viewing Defined Actions
You can view actions that are in the defined actions list. Selecting 
an action will cause the selected action to be loaded into the Action 
Properties panel.

Editing a Defined Action
Once you load a defined action into the Action Properties panel, 
you can edit the action. You can repeat any of the steps outlined in 
the section on “Creating an Action” on page 150. If you want to add 
the edited action to the list, then add the action as outlined in the 
“Adding an Action” on page 151. If the edited action has the same 
name as the old action, the edited action will overwrite the old 
action. Otherwise, it will be added to the list of defined actions, 
along with the old action.

Deleting a Defined Action
If you wish to delete a defined action, you have two options. You 
can first select the action in the Defined Actions list, then click on 
the Delete button. You can also select the action in the list, then 
select the Delete menu item from the Edit menu.

Saving the Actions
After you’re finished adding and deleting actions, you need to save 
the action list to the current agent. To do this, select the Save menu 
item from the File menu.

Switching Windows
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tools are open. To switch to the 
desired tool, select the tool from the Windows menu. The selected 
tool will then be brought to the front on your screen.
 – 152



  
Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool.  The Index menu item will display an index to the help 
system's contents.  The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit.  The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information.  The AgentBuilder Home 
Page menu item will display the home page for the AgentBuilder 
product. 

Closing the Action Editor
To close the Action Editor and leave all other tools open, select 
Close from the File menu. If you have modified the list of defined 
actions, you will be given a chance to save the action list before 
closing the Action Editor.

Exiting AgentBuilder
The File menu's Exit menu can be used to exit AgentBuilder. This 
will close all of the tools that are currently open. If you have modi-
fied the list of defined actions, you will be given a chance to save 
the action list before exiting the system. 

Commitment Editor
The Commitment Editor allows you to view, edit, and create com-
mitments. Commitments are based on a particular action; they spec-
ify the time an action will be committed and the agent to which the 
action will be committed. The Commitment Editor is shown in Fig-
ure 2. 
 – 153



  
Overview 
The File menu allows you to create a new commitment, save the 
current list of commitments, close the Commitment Editor, and exit 
the system. The Edit menu allows you to delete commitments from 
the defined commitments list. The Windows menu lets you switch 
between AgentBuilder tools that are open. The Help menu gives 
you access to the AgentBuilder Help system. 

The Commitment Properties panel allows you to create a new com-
mitment or view a defined commitment. The Commitment Proper-

Figure 2. Commitment Editor
 – 154



  
ties panel allows you to specify a commitment's action, description, 
parameter values for the action, agent to commit the action to, and 
the time the action should be executed.

The Defined Commitments panel allows you to add new commit-
ments to the list or delete defined commitments from the list.

Operation

Creating a Commitment
Before creating a new commitment, the Commitment Properties 
panel must be cleared. If a commitment is currently being edited, 
then you can select New from the File menu. Selecting the New 
menu item will cause the system to ask you to confirm that you 
wish to start editing a new commitment.

To create a commitment, you must enter the required information 
into the Commitment Properties panel. You must select an action 
for which this commitment is defined. The Commitment Properties 
panel contains two radio buttons for selecting User Defined Actions 
or Built-In Actions. The Actions combo box displays the appropriate 
actions depending on which radio button is selected. Currently, 
actions that are tied to commitments must be connected to a PAC 
instance. Once an action has been selected two things will happen. 
The selected action's method will be queried and, if the action's 
method contains any parameters, the Specify Parameter Values 
button will be enabled; if the selected action's method does not con-
tain any parameters, the Specify Parameter Values button will be 
disabled. If the Specify Parameter Values button is enabled, then 
you must specify all parameter values. This process is explained in 
the following section. After selecting an action, the text field in the 
Defined Commitment's panel will show the name of the selected 
action.
 – 155



  
After an action has been selected, you must specify the agent to 
whom the commitment will be made. The Committed To combo-
box is located below the Specify Parameter Values button. This 
combo-box is an editable combo-box, and contains a list of avail-
able agents. The list of agents is constructed using the agencies to 
which the current agent belongs. To specify an agent, you can 
either select from the list of agents provided or manually enter an 
agent's name in the combo-box. If you manually enter an agent's 
name, you must press the Enter key in the combo-box so that the 
agent's name can be entered. Once an agent has been specified, the 
agent's name will be displayed in the Defined Commitments text 
field.

You must also specify a time to execute the action. The combo-box 
at the bottom of the Commitment Properties panel is the Time pull-
down menu. The Time pull-down menu provides a number of 
options including StartupTime, ShutdownTime and a user-defined 
time. If you select the user-defined item, the system will display the 
Time Dialog described below. If a user-defined time is entered, the 
time will be shown in the combo-box. Once a time is specified for 
the commitment, this time will be shown in the Defined Commit-
ments text field.

You can also enter a description for the commitment in the Descrip-
tion text area.

Specifying Parameter Values 
The Parameters Dialog allows you to easily specify parameter val-
ues for simple and complex objects. The dialog consists of two sec-
tions: a Parameter Tree panel and a panel that can switch between a 
Parameter panel and a Complex Parameter panel. The Parameters 
Dialog is shown in Figure 3. 

The Parameter Tree panel contains a hierarchical tree of the param-
eters. The tree nodes use the following convention for labeling 
 – 156



  
name(type). The root node is labeled with the action name and the 
action's PAC type. The children of the root node are the parameters 
for the action's method. Any child nodes with a folder icon indicate 
that the parameter is a complex object whose constructor must be 
specified.

The color of the nodes is also significant. Nodes whose values have 
not been specified have a red label; nodes whose values have been 
specified have a black label. An unspecified node recursively sets 
its parent to be unspecified so that you can easily see which nodes 
have not been specified when the tree is fully collapsed.

To specify a parameter value, you must first select the parameter to 
be specified. Based on the type of node selected, the panel below 

Figure 3. Parameters Dialog
 – 157



  
the Parameter Tree will display either a Parameter panel or a Com-
plex Parameter panel. Both the Parameter panel and the Complex 
Parameter panel contain a read-only Name and Type text field. The 
name and type of the selected node is shown in the read-only text 
fields. The primary difference between the two panels is that the 
Parameter panel allows you to specify a value for the selected 
parameter. To enter a value for the selected parameter, enter a value 
into the Value text field in the Parameter panel. To enter a null 
value for the parameter, you must type null into the value field. An 
empty string is considered to be a valid value and can also be 
entered into the value field. Once a value has been entered, you 
must press the Enter key on your keyboard while the cursor is posi-
tioned in the Value text field or click on the Enter button in order to 
enter the value in the selected parameter. The new value will be 
shown in the tree after it has been entered.

The Complex Parameter panel contains a pull-down menu for spec-
ifying a constructor for the selected parameter. This is necessary 
because the selected parameter's type is a complex object. You 
must now select a constructor from the Constructor pull-down 
menu. 

If no constructors are listed, you must create a constructor for the 
complex object. To do this, go back to the Object Modeler and open 
the ontology that contains the complex object. You can then modify 
the object's properties to include one or more constructors. The 
object model must then be saved, and the PAC Editor must be 
opened from the Agent Manager. From the PAC Editor, update the 
object model that contains the updated PAC. (Please refer to “PAC 
Editor” on page 162 for information on updating PACs.)

Once a constructor is selected for the complex object, the tree node 
for the complex object will change based on the selected construc-
tor. Any parameters that are in the selected constructor become 
children of the tree node. If the children's types are all Java types, 
 – 158



  
then you can assign values to the parameters as described above. 
Otherwise, if the children's parameter types contain complex 
objects, the process of selecting a constructor and specifying values 
must be repeated. This process must be repeated until all leaves 
either contain Java types or the selected constructors for complex 
objects have no parameters.

Once you have fully specified the parameter tree, you can click on 
the OK button to register the new parameter values. Clicking on the 
Cancel button will cancel any changes that were made to the 
parameter tree.

Specifying a User-Defined Time
The Time Dialog allows you to specify a specific date and time that 
an action will be committed. The date is specified by selecting a 
month and day from the pull-down menu. The year must be entered 
(typed) in a four digit, numerical format. The time is specified 
using the format hh:mm:ss. Time uses three text fields with only 
numerical entries allowed. This dialog is shown in Figure 4. 

Once you have specified a date and time, you must select the OK 
button in order for the time to be set for the commitment. Any 
invalid entries will cause an error dialog to be displayed. You will 
be given an opportunity to correct any errors. If you wish to cancel 
operations using the Time Dialog then select the Cancel button. 

Figure 4. Time Dialog
 – 159



  
Selecting the Cancel button will ensure that the Time pull-down 
menu remains unmodified.

Adding a Commitment
Once a commitment has been completely defined, the Defined Com-
mitments panel Add button is enabled. In order to construct a com-
pletely defined commitment, you must specify a selected action, 
any parameter values specified through the Parameters Dialog, a 
selected agent to commit to, and a time to perform the action. 

Pressing the Add button will add the commitment in the Defined 
Commitments text field in the list of defined commitments. Notice 
that the Commitment Properties panel is reset, readying it for defin-
ing a new commitment or viewing defined commitments

You can view commitments that are in the Defined Commitments 
list. Selecting a commitment will cause the selected commitment to 
be displayed in the Commitment Properties panel.

Editing a Defined Commitment
Once you load a defined commitment into the Commitment Proper-
ties panel, you can edit the commitment using any of the steps out-
lined in “Creating a Commitment” on page 155. If you want to add 
the edited commitment to the list, then add the commitment as out-
lined in “Adding a Commitment” on page 160. If the edited com-
mitment has the same action and agent, the edited commitment will 
overwrite the old commitment. Otherwise, it will be added to the 
list of defined commitments.

Deleting a Defined Commitment
If you want to delete a defined commitment, you have two options. 
You can first select the commitment in the Defined Commitments 
list and then click on the Delete button to the right of the list. You 
can also select the commitment in the list, then select the Delete 
menu item in the Edit menu.
 – 160



  
Saving Commitments
Once you have completed adding and deleting commitments, you 
must save the commitment list for the current agent. To do this, 
select the Save menu item from the File menu.

Switching Windows
The Windows menu is a dynamic menu that displays a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools when multiple tools are open. To switch to the 
desired tool, select the tool from the Windows menu. The selected 
tool will then be brought to the front on your display.

Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool.  The Index menu item will display an index to the help 
system's contents.  The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit.  The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information.  The AgentBuilder Home 
Page menu item will display the home page for the AgentBuilder 
product. 

Closing the Commitment Editor
To close the Commitment Editor and leave all of the other tools 
open, you should select Close from the File menu. If you have 
modified the list of defined commitments, you will be given an 
opportunity to save the commitment list before closing the Com-
mitment Editor.

Exiting AgentBuilder
The File menu's Exit menu item should be selected to exit Agent-
Builder. This will close all of the tools that are currently open. If 
you have modified the list of defined commitments, you will be 
 – 161



  
given an opportunity to save the commitment list before exiting the 
system. 

PAC Editor
The PAC Editor allows you to view, edit and create PACs, PAC 
Instances, and Java Instances. The data created by this editor is 
used extensively by the Rule Editor to construct various patterns. 
You cannot directly use classes defined in the Object Modeler in 
your rules. The PAC Editor is necessary for creating PACs from the 
classes so they can be made a part of your rules. 

Overview
The File menu can be used to perform various operations on the 
PACs and instances. From the File menu, you can create new 
PACs, PAC Instances and Java instances. You can also save the list 
of defined PACs, PAC Instances, and Java Instances. You can also 
import and update the list of defined PACs. As with all of the other 
AgentBuilder tools, the File menu provides the Close and Exit 
menu items for closing the editor and exiting AgentBuilder. The 
PAC Editor is shown in Figure 5. 

The Edit menu allows you to delete any of the items in the defined 
PACs, PAC Instances, or Java Instances list. The Windows menu 
lets you switch between other open AgentBuilder tools. The Help 
menu provides you with access to the AgentBuilder help system.

The main panel of the PAC Editor contains a Panel Options panel. 
The Panel Options panel contains tabs that allow you to switch 
between the PACs, PAC Instances, or Java Instances panel.  The 
contents of each of the panels is explained in the following sections.
 – 162



  
Operation

Importing PACs
The current version of AgentBuilder does not allow you to directly 

Figure 5. PAC Editor
 – 163



  
create PACs.  Instead, you must import the PACs from classes 
defined in object models. To import PACs, select the Import menu 
item from the File menu. Figure 6 shows the Import Dialog.

The Import Dialog consists of two sections: the Available Classes 
panel and the Selected Classes panel. To import PACs, you must 
first select an object model in the Available Classes panel. Once an 
object model is selected, the dialog will display the names of the 
classes that have been defined in the selected object model.

The contents of the Object Model pull-down menu is a complete 
listing of all defined ontologies in the user’s repository. You have 
several ways to select classes to be added to the list in the Selected 

Figure 6. Import Dialog
 – 164



  
Classes panel. The first method is to select a class in the list and 
then click on the Add button. If you need to select multiple classes, 
you must hold down the Control key on your keyboard while 
selecting the classes. Once all of the classes have been selected, 
click on the Add button. If you want to add all of the classes listed, 
you can click on the Add All button. You can now select a different 
object model and continue to add classes as described above.

You can delete classes listed in the Selected Classes panel at any 
time. To do this, first select the classes to be deleted. Then, click on 
the Delete button. The selected class will then be deleted from the 
list.

When you are finished adding classes to the list, you must click on 
the OK button. Clicking on the Cancel button will cancel the 
import operation. If the OK button has been pressed and there were 
classes listed in the Selected Classes panel, then the selected 
classes will be converted into PACs. The new PACs will be dis-
played in the Defined PACs panel. If you cannot see the Defined 
PACs panel, make sure that the PACs radio button in the Panel 
Options panel of the PAC editor is selected.

Viewing Defined PACs
To view the properties of a defined PAC, select the PAC in the 
Defined PACs list. Selecting a defined PAC from this list will cause 
the PAC Properties panel to display information about the selected 
PAC. The selected PAC's name, description, package, ontology, 
and sendable status will be displayed. To view attributes or meth-
ods simply click the appropriate button and an attribute or methods 
list will appear in a dialog box. 

Deleting a Defined PAC
You can use the Defined PACs panel to delete any of the defined 
PACs. To do this, you must first select the PAC to be deleted. Then, 
 – 165



  
click on the Delete button. Clicking on the Delete button will 
remove the selected PAC from the list.

Updating PACs
On occasion you will need to update a PAC from an ontology. The 
PAC Editor provides a way to update the list of defined PACs.  Fig-
ure 7 shows the Update Dialog used to update defined PACs. 

The Update Dialog is accessed from the File menu's Update menu 
item. The dialog contains a PACs panel, which lists all the PACs 
associated with the agent. To update the defined PACs in the 
Update Dialog, select the PACs you wish to update. Holding the 
Ctrl key while clicking on the PACs, will allow you to make multi-
ple PAC selections. If you want to update all of the PACs listed, 
click the Select All button. Once the PACs that need to be updated 
are selected, you need to click on the OK button.

Any of the defined PAC's whose object models were updated will 
now display the updated information.

Figure 7. PAC Update Dialog
 – 166



  
Defining PAC Instances
Once you have defined a PAC, you can define PAC Instances. To 
define a PAC Instance, select the PAC you want to instantiate. All 
other items in the PAC Instance Properties panel are optional for 
defining a PAC Instance. To specify a name for the PAC Instance, 
type the name into the Name text field. To add the name to the PAC 
Instance, you must either press the Enter key on your keyboard 
while the cursor is in the Name text field, or click on the Enter but-
ton next to the Name text field. You can also type the description of 
the PAC Instance in the Description text area. 

Once a PAC is selected, you are given the option of defining the 
PAC Instance as an Initial PAC Instance. This is done using the Ini-
tial PAC Instance checkbox. If the Initial PAC Instance checkbox is 
selected, the Specify Constructor button will be enabled. A neces-
sary condition for defining an initial PAC Instance is that its con-
structor be selected and that all of its constructor parameters be 
specified. 

Specifying Constructors for PAC Instances
To specify constructors for a PAC Instance click on the Specify 
Constructor button. Figure 8 shows the dialog that will appear.

The Constructor Dialog allows you to specify the constructor and its 
corresponding parameter values for various kinds of objects. The 
dialog consists of two sections: a Constructor Tree panel and a 
panel that switches between a Parameter panel and a Complex 
Parameter panel.

The Constructor Tree panel contains a hierarchical tree of the 
parameters. The tree nodes use the name(type) convention for 
labeling. The root node is labeled with the PAC Instance name and 
the PAC Instance's PAC type. The children of the root node are the 
parameters for the PAC type's constructors. Any nodes with a 
 – 167



  
folder icon indicate that the parameter is a complex object whose 
constructor needs to be specified.

The color of the nodes is also significant. Nodes whose values have 
not been specified have a red label; nodes whose value have been 
specified have a black label. An unspecified node recursively sets 
its parent to be unspecified, so you can easily see which nodes have 
not been specified even when the tree is fully collapsed.

Figure 8. PAC Instance Constructor Dialog
 – 168



  
To specify a parameter value, you must first select the parameter to 
be specified. The panel below the Constructor Tree will change to 
either a Parameter panel or a Complex Parameter panel based on the 
type of node selected. Both the Parameter panel and the Complex 
Parameter panel contain a read-only Name and Type text field. The 
name and type of the selected node are shown in the read-only text 
fields. The difference between the two panels is that the Parameter 
panel allows you to specify a value for the selected parameter. To 
enter a value for the selected parameter, enter a value into the Value 
text field in the Parameter panel. To enter a null value for the 
parameter, type null into the value field. An empty string is con-
sidered to be a valid value and can also be entered into the value 
field. Once a value has been entered, you can press the Enter key 
on your keyboard while the cursor is in the Value text field, or the 
Enter button can be clicked. This will cause the value to be regis-
tered with the selected parameter. The entered value is shown in the 
tree once it has been registered.

The Complex Parameter panel contains a pull-down menu for spec-
ifying a constructor for the selected parameter. This is because the 
selected node type is a complex object.  You must select a construc-
tor from the Constructor pull-down menu.

If no constructors are listed, you can create a constructor for the 
complex object. To do this, go back to the Object Modeler and open 
the ontology that contains the complex object. You can then modify 
the object's properties and include one or more constructors. The 
object model must then be saved and the defined PACs updated.

Once a constructor is selected for the complex object, the tree node 
for the complex object will change. Any parameters that are in the 
selected constructor become children of the tree node. If the chil-
dren's types are all Java types, then you can assign values to the 
parameters as described above. Otherwise, if the children's parame-
ter types contain complex objects, the process of selecting a con-
 – 169



  
structor and specifying values must be repeated. This process must 
be repeated until all leaves either contain Java types, or the selected 
constructors for complex objects have no parameters.

Once you have fully specified the constructor tree, you can click on 
the OK button to register the new parameter values. Clicking on the 
Cancel button will cancel any changes that were made to the con-
structor tree.

Adding a PAC Instance
Once a PAC Instance has been defined, the PAC Instance can be 
added to the list of Defined Instances. If the Add button in the 
Defined Instances panel is disabled, then the PAC Instance has not 
been completely defined. Check to make sure that a PAC has been 
selected. If the PAC Instance is checked to indicate that it is an Ini-
tial PAC Instance, make sure the constructor and its parameters 
have been fully specified.

Once the Add button is enabled, you can add the PAC Instance to 
the list of defined PACs. Clicking on the Add button will add the 
PAC Instance to the list. Notice that the Instance Properties panel is 
cleared and the text field in the Defined Instance panel updated to 
reflect that a new PAC Instance has been defined.

Viewing Defined PAC Instances
To view the properties of a defined PAC Instance, select the PAC 
Instance in the Defined Instances list. Selecting a defined PAC 
Instance will cause the Instance Properties panel to display infor-
mation about the selected PAC Instance. The selected PAC 
Instance's name, description, PAC and Initial PAC Instance status 
will all be displayed. If the PAC Instance is an Initial PAC Instance, 
you can view the specified constructor by clicking on the Specify 
Constructor button (see Figure 9).
 – 170



  
Figure 9. Viewing PAC Instances
 – 171



  
Editing a PAC Instance
To edit a PAC Instance, follow the above instructions for viewing a 
defined PAC Instance. Once the PAC Instance is loaded into the 
Instance Properties panel, you can modify the PAC Instance. When 
finished modifying the PAC Instance, the PAC Instance can be 
added to the list of Defined Instances as described above. Note that 
if the modified PAC Instance has the same name as the original 
PAC Instance, the modified PAC Instance will overwrite the origi-
nal PAC Instance. If the modified PAC Instance has a different 
name, the PAC Instance will be added to the list in the same manner 
as a new instance.

Deleting a Defined PAC Instance
From the Defined Instances panel, you can delete any of the defined 
PAC Instances. To do this, first select the PAC Instance to be 
deleted. Then, click on the Delete button. Clicking on the delete 
button will delete the selected PAC Instance from the list.

Creating Java Instances
The PAC Editor also supports the construction of Java Instances. 
Java Instances are used in the Rule Editor in the construction of pat-
terns. To specify a Java Instance, you must select a Java type for the 
instance.  Like PAC Instances, everything else in the Java Instance 
Properties panel is optional. Java types include some non-primitive 
types, which are Arrays, Enumeration, Hashtable, Object, and Vec-
tor. To specify a name for the Java Instance, type the name into the 
Name text field. To add the name to the Java Instance, you must 
either press the Enter key on your keyboard while the cursor is in 
the Name text field, or click on the Enter button next to the Name 
text field. You can also type in a description of the Java Instance in 
the Description text area.

Once a Java type has been selected, you are given the option to 
make the Java Instance an Initial Java Instance. This is done using 
 – 172



  
the Initial Java Instance checkbox. The Initial Java Instance check-
box will be disabled for non-primitive java types. If the Initial Java 
Instance checkbox is selected, the text field and the Add button 
adjacent to the checkbox are enabled. The text field is used to enter 
a value for the Java Instance. Once a value has been entered in the 
text field, you can either press the Enter button while the cursor is 
in the text field or click on the Add button.

Adding a Java Instance
Once a Java Instance has been defined, the Java Instance can be 
added to the list of Defined Java Instances. If the Add button in the 
Defined Java Instances panel is disabled, then the Java Instance has 
not been completely defined. Check to make sure that a Java type 
has been selected. If the Java Instance is checked as an Initial Java 
Instance, ensure that a value has been specified.

Once the Add button is enabled, you can add the Java Instance to 
the list of Defined Java Instances. Clicking on the Add button will 
add the Java Instance to the list. Note that the Java Instance Proper-
ties panel is cleared and the text field in the Defined Java Instance 
panel updated to show that a new Java Instance has been defined.

Viewing Defined Java Instances
To view the properties of a defined Java Instance, you must select 
the Java Instance in the Defined Java Instances list. Selecting a 
defined Java Instance will cause the Java Instance Properties panel 
to display information about the selected Java Instance. The 
selected Java Instance's name, description, Java type and Initial 
Java Instance status will be displayed. If the Java Instance is an ini-
tial Java instance, the text field will display the value assigned to 
the Java Instance (see Figure 10).
 – 173



  
Figure 10. Viewing Java Instances
 – 174



  
Editing a Java Instance
To edit a Java Instance, follow the instructions for viewing a 
defined Java Instance. When the Java Instance is loaded into the 
Java Instance Properties panel, you can modify the Java Instance. 
When finished modifying the Java Instance, the Java Instance can 
be added to the list of Defined Java Instances as described above. 
Note that if the modified Java Instance has the same name as the 
original Java Instance, the modified Java Instance will overwrite 
the original Java Instance. If the modified Java Instance has a dif-
ferent name, the Java Instance will be added to the list.

Deleting a Defined Java Instance
Using the Defined Java Instances panel, you can delete any of the 
defined Java Instances. To do this, you must first select the Java 
Instance to be deleted, then click on the Delete button. Clicking on 
the Delete button will delete the selected Java Instance from the 
list.

Saving
If you have modified the contents of the Defined PACs, PAC 
Instances or Java Instances, you must save the new or modified data 
to the currently loaded agent. To do this, select the Save menu item 
in the File menu. The Save menu item selection will save all PACs, 
PAC Instances, and Java Instances to the currently loaded agent.

Switching Windows
The Windows menu is a dynamic menu that contains a list of all 
AgentBuilder tools that are open. This menu facilitates switching 
between the tools. To switch a different tool, select the tool you 
wish to switch to from the Windows menu list. The selected tool 
will then be brought to the front on your display.
 – 175



  
Accessing Help
The help system can be accessed using the Help menu item. The 
About menu item allows you to read the help information for the 
current tool.  The Index menu item will display an index to the help 
system's contents.  The Tutorial menu item will display the Quick 
Tour of the AgentBuilder toolkit.  The About AgentBuilder menu 
item will display the AgentBuilder logo along with the version 
number and copyright information.  The AgentBuilder Home 
Page menu item will display the home page for the AgentBuilder 
product. 

Closing the PAC Editor
If you want to close only the PAC Editor and leave all of the other 
tools open, select Close from the File menu. If you have modified 
the list of defined PACs, PAC Instances, or Java Instances, you will 
be prompted to save everything before closing the PAC Editor.

Exiting AgentBuilder
The File menu's Exit menu item allows the user to exit Agent-
Builder. This will close all of the tools that are currently open. If 
you have modified the list of defined PACs, you will be given an 
opportunity to save the modified PACs list before exiting the sys-
tem. 

Rule Editor
The Rule Editor tool is used to specify the behavioral rules used by 
the agent.  (Note: Throughout this section behavioral rules are sim-
ply called rules).  Rules are the basic control mechanism for Agent-
Builder agents; they determine how the agent responds to external 
and internal stimuli.  Each rule consists of a set of conditions and 
the desired actions or mental changes that will occur when those 
conditions are met.  The set of conditions is sometimes referred to 
as the rule's the left-hand side, or LHS; the actions and mental 
 – 176



  
changes are the rule's right-hand side, or RHS.  The Rule Editor has 
separate panels for constructing the two sides of a rule.

The Rule Editor allows you to create two different types of condi-
tions for the left-hand side of a rule.  One type of condition is based 
upon external events and is termed a message condition.  A mes-
sage condition is a test performed on any new messages arriving in 
the agent's input buffers (e.g., comparing the name of the message 
sender against an expected sender name).  The second type of con-
dition is based upon the agent's internal state and is termed a mental 
condition.  A mental condition is a test performed on beliefs in the 
mental model of the agent.

Patterns on the left-hand side of a rule generally consist of a combi-
nation of operators, variables, constant values, and references to 
named instances in the mental model.  Most variables will bind to 
all instances of a specified type in the mental model.  For example, 
assume ?i is the name of an Integer variable.  In the pattern (?i 
>= 4) the variable ?i will bind to every Integer instance in the 
mental model and the value of each binding will be used in the 
comparison.  In contrast, a named instance variable is a special 
type of variable which will bind only to a named instance with the 
specified name and type.  For example, the pattern ( currentCount 
>= 4 ) contains the named instance variable currentCount, which 
can bind only to the named instance currentCount in the mental 
model.  A named instance variable is similar to a global variable in 
that it can be used in any of the agent's rules and will always bind to 
the same instance in the mental model.

The following example illustrates the difference between the two 
types of variables, using a trivial mental model with three Integer 
beliefs.

Mental Model
Integer<width>  8
 – 177



  
Integer<length>  3

Integer<currentCount> 5

Rule 1
IF ( ?i >= 4) 

THEN ( DO SystemOutPrintln( "Rule 1 Fired." ) 

Rule 2
IF ( currentCount >= 4) 

THEN ( DO SystemOutPrintln( "Rule 2 Fired." ) 

In Rule 1 the Integer variable ?i will bind to each of the Integer 
values in the mental model and each value will be compared to 4.  
Rule 1 will fire twice: once with ?i bound to 8, then once with ?i 
bound to 5. The binding of ?i to 3 does not satisfy the pattern in 
Rule 1 so the rule will not fire with that binding.  In Rule 2 the 
named instance variable currentCount will bind to the value 5 from 
the currentCount named instance (which satisfies the pattern) and 
so Rule 2 fires once. 

Technically there's a difference between a named instance and a 
named instance variable: a named instance is part of the mental 
model (i.e., it's a belief), but a named instance variable is a compo-
nent of a pattern in a rule.  In some situations it's important to 
understand this distinction.  It's possible (and fairly common) for a 
pattern in a rule to refer to a named instance which does not always 
exist in the mental model.  Adding a named instance variable to a 
pattern in a rule does not guarantee that the associated named 
instance will be present in the mental model.

For example, consider the Print rule of ExampleAgent3 in the 
AgentBuilder User’s Guide.  The second IF pattern in that rule con-
tains a Boolean named instance variable named Ready_to_print: 
( Ready_to_print EQUALS true )
 – 178



  
The Ready_to_print named instance variable refers to an instance 
that does not exist in the agent's mental model until it gets asserted 
during execution, by the Connect rule.  Even though at the start 
there is no instance named Ready_to_print in the mental model, the 
Print rule does contain a Ready_to_print named instance variable.  
This pattern evaluates to true only if the Ready_to_print instance 
exists in the mental model and has the value true.  The pattern eval-
uates to false if the mental model does not contain a named instance 
that matches the named instance variable in the pattern.  In this 
example, the Print rule is prevented from firing until the 
Ready_to_print instance is found in the mental model.

When the Connect rule is fired it performs the mental change:
( ASSERT ("Ready_to_print" true) )

This is the mental change that actually creates the Ready_to_print 
instance and assigns it a name and a value.  After this instance has 
been asserted into the mental model the pattern for the Print rule 
(shown above) will evaluate to true and the Print rule will be acti-
vated.

A named instance variable is similar to a global variable in that it 
can be used in any of the agent's rules and will always bind to the 
same instance in the mental state.  In the previous example with the 
currentCount named instance, several rules could have patterns 
that refer to currentCount and all of them would access the same 
value each cycle.

For the right-hand side of a rule, the Rule Editor allows you to spec-
ify the  actions that occur when the rule's conditions are satisfied. 
Actions can be created so that they affect the agent's mental model 
of the external world.
 – 179



  
Overview
The Rule Editor is divided into two major panels; one panel for 
editing the left-hand side of a rule and one panel for editing the 
right-hand side. The editor for the left-hand side of the rule is 
referred to as the LHS editor; the editor for the right-hand side is 
referred to as the RHS editor.

The Rule Editor contains a menu bar with four items: File, Edit, 
Windows and Help.  The File menu allows you to open (i.e., load 
and start editing) previous rules as well as save the current one.  
Selecting File  New  New Rule creates a completely new rule, 
or selecting other items under File  New will clear selected sec-
tions in the existing rule.  For example, choosing File  New Con-
dition causes the condition accumulator line to be cleared.

The main features of the Rule Editor are the accumulator text fields 
and the pattern lists. Each editor has accumulator text fields; these 
are single-line text fields with a New and Add button directly 
below them. The accumulators are used to accumulate the compo-
nents of arbitrarily complex conditions or action expressions. The 
pattern lists are at the middle and bottom of the LHS editor; the 
action/mental change list is at the bottom of the RHS editor.

A rule is made up of individual patterns which are built up one at a 
time in the accumulator line and then added to the lists.  By utiliz-
ing the pull-down menus as well as context sensitive pop-up menus, 
you can construct complex expressions as desired.  Several of the 
dialogs used in constructing the rule use a tree paradigm.  In addi-
tion, the Up and Down buttons at the right side allow you to change 
the ordering of individual lines.  Thus it's easy for you to rearrange 
ordering of patterns (or actions or mental changes) within the rule.1
 – 180



  
Rule Properties
Edit Properties allows the user to access the rule properties. The 
two basic parts of the Rule Properties dialog are the name of the 
rule and the rule description.  There are few constraints on the name 
of a rule; only that it be unique within the rule set and that it not use 
hidden characters.  You're encouraged to choose descriptive rule 
names; you may even find that descriptive phrases work well as 
rule names.  The description window allows you to add a descrip-
tion to accompany the rule.  No size limitations are imposed, but 
generally only a few sentences are required.

LHS Editor
Figure 11 shows the LHS Editor.  There are three main panels: the 
Conditions panel, the message conditions pattern list and the mental 
conditions pattern list. 

The Conditions panel is composed of two pull-down menus and 
three pop-up dialogs, an accumulator, a New button, and Add but-
ton, a Message Conditions panel, and a Mental Conditions panel. 
The Operators menu is common to all panels in both the LHS and 
RHS editors, but the items available in each Operators menu will 
differ depending on the panel. In the Conditions panel, the Opera-
tors menu contains various relations and pattern modifiers that are 
usefule in patterns. The operator elements in this menu fall into sev-
eral different categories shown below. See “Operators and Pat-
terns” on page 301 for a detailed description of the operations.

• equality relations (EQUALS, NOT_EQUALS) 
• boolean relations  (AND, OR, NOT) 
• binding relation  (BIND) 

1.A complete description of building complex patterns using the accumulator is 
described in “Building Complex Expressions” on page 8.
 – 181



  
• quantified relations (FOR_ALL, EXISTS) 
• numerical relations (<=,<, !=, =, ...) 
• string functions  (concat, substring, ...) 
• arithmetic functions    (+, -, *, /) 
• mathematical functions  (tan, arctan, cos, arccos, sqrt, ...) 
• miscellaneous functions (SET_TEMPORARY)

The Values menu allows you to construct an instance of any Java 
type, a KQMLMessage type, a Time type, or a Class type and insert it 
into the current pattern. This is useful when you want to specify a 
comparison against a constant value. For example, if you want to 
test whether a field in an object is less than 4 you could specify the 

Figure 11. Rule Editor LHS
 – 182



  
constant value (i.e., 4, probably as an integer or float) in the Val-
ues menu.

For the Java types, you will be presented with a dialog for entering 
a literal value.  For the KQMLMessage, TIME and Class type, the user 
is present with a specific dialog for entering each of the aforemen-
tioned types.

There are three different pop-up dialogs. The first is the New Vari-
able dialog. This dialog allows you to construct new variables that 
will be available for use in patterns.Figure 12 shows the New Vari-
able dialog. To create a new variable, you would first select the 
PACs or Java Types tab panel. Once a panel has been selected, a list 
of available variables types will be displayed. You can then select a 
PAC or Java type. Once a variable type has been selected, the focus 
will be transferred to the Variable Name text field. Type in a name 
for the new variable and select the Add button. Selecting the Add 
button will add the new variable to the list at the bottom of the dia-
log.

The creation of a KqmlMessage variable differs in that a different 
pop-up dialog is displyaed when you click on the Add button. You 
will be shown a Binding Dialog for the KqmlMessage variable, as 
shown in Figure 13. You can specify the Kqml message binding to 
be an incoming or mental model message by using the pull-down 
menu. Once selected, you can click on the OK button so that the 
KqmlMesage variable can be added to the list of new variables and 
the dialog can be dismissed.

The Rule Editor supports the creation of an Array variable. The 
Array type is listed in the Java Types panel. Like the creation of the 
KqmlMessage, a different pop-up dialog is displayed when you click 
on the Add button. You will be shown an Array Dialog for the Array 
variable, as shown in Figure 14. You can specify the array type by 
selecting a type from the list. Notice that you will be able to create 
 – 183



  
Figure 12. New Variable Dialog

Figure 13. KQML Message Binding Dialog
 – 184



  
an array of Java types, Vector, Hashtable, Enumeration, and PAC 
types. Once selected, you can click on the OK button so that the 
array variable can be added to the list of new variables and the dia-
log can be dismissed.

The Defined Variables dialog allows you to select previously 
defined variables for use in a message or mental pattern. Figure 15 
shows the Defined Variables dialog. For any array types in the Java 
Types panel, the array variable will only have attributes for the 
component type and length. This dialog also allows you to cast the 
selected variable to a different type. To cast a selected variable, 
select from the Casting Type combo box. The combo box contains a 
list of all avilable PACs and Java types. Once a casting types has 
been selected, the type of the selected variable will be updated in 
the dialog. You can no click on the OK button to add the selected 
variable to the Condition panel's accumulator text field.

The Instances pop-up dialog allows you to specify conditions based 
on named instances in the mental state. Figure 16 shows the 
Instances dialog.

Figure 14. Array Dialog
 – 185



  
Like the Defined Variables dialog, the Instances dialog allows you 
to cast named instances to an available PAC or Java type. To cast a 
named instance, use the same method as was described in the 
Defined Variables dialog.

The Intentions, Actions and Commitments pull-down menus are 
currently disabled.  They will be enabled in later versions of Agent-
Builder.

The New button allows the user to create a new message or mental 
condition. The same can also be done by selecting File  New  
New Condition. Pressing the Add button will cause AgentBuilder 
to check to see if the pattern in the accumulator is valid. If the pat-
tern is valid, it will be added to either the Message Conditions list or 
the Mental Conditions list.

Figure 15. Defined Variable Dialog
 – 186



  
RHS Editor
Figure 17 shows the RHS Editor. There are two main panels: the 
Actions panel and the Defined RHS Elements panel. The created 
patterns from the actions panels supply the Defined RHS Elements 
list with action statements. 

Action Panel
The Actions panel is composed of four pull-down menu, four pop-
up dialogs, an accumulator line, a New button and an Add button. 
By using these dialogs and menus, you can create arbitrarily com-
plex arguments and mental change statements.

The Operators pull-down menu allows access to various functional 
operators.  This menu supplies a subset of the operators in the LHS 

Figure 16. Instances Dialog
 – 187



  
operator lists.  These operators (along with their operands) can be 
used as arguments for actions. These operators include:

• string functions 
• arithmetic functions
• mathematical functions
• miscellaneous functions (ASSERT, RETRACT, 

SET_TEMPORARY)

The Actions pull-down menu allows access to the user-defined 
actions. The user-defined actions must first be defined in the Action 

Figure 17. Rule Editor (RHS)
 – 188



  
Editor before they can be used in the Rule Editor.  Please see the 
Action Editor section for more information about defined actions.

The built-in Actions pull-down allows access to the system-
defined actions supported by the Run-Time System.  For a more 
detailed description of the built-in actions please see “Intrinsics” on 
page 287.

There are three key components which are identical to their coun-
terparts in the Conditions panel in the LHS editor:  the Values pull-
down menu, the Defined Variables dialog, and the Instances dialog. 

The New Object dialog is used when defining new instances of 
PACs or Java types. Figure 18 shows the New Object dialog. To 
specify a new object, you must first select the type of object that 
you want to create. Once you have selected a type, you must then 
select the constructor to use for that type. The new object will then 
be inserted into the action pattern. Any parameters for the new 
object will need to be specified in the action pattern. The New 
Object dialog is used when specifying a parameter to an action that 
needs to be built at rule execution time.

The Return Variable dialog is used to rename any automatically 
generated return variable. Figure 19 shows the Return Variable dia-
log. Return variables are automatically created for any private 
action, built-in action, or method that returns something. To change 
the name of a return variable, you first select the return variable in 
the Action pattern's accumulator. Then click on the Return Vari-
able button to pop-up the dialog. Once the dialog is displayed, you 
select the type of the return variable that you are replacing. Once 
the type is selected, you can enter a variable name. Clicking on the 
OK button will then rename the selected return variable.

The New button allows you to create an action. You can also do this 
by selecting File  New  New Action. The Add button will 
 – 189



  
check to see if the pattern in the accumulator is valid. If the pattern 
is valid, it will be added to the Defined RHS Elements list.

Defined RHS Elements Panel
The last panel in the RHS editor is the Defined RHS Elements panel 
which contains the list of private actions and mental changes on the 
RHS of the rule. The Up and Down buttons on the right of the panel 
can be used to rearrange the elements in the list, and the Delete but-
ton can be used to delete a selected element.  It is crucial to main-
tain the integrity of the ordering within this list. Actions, except for 
the built-in SendKqmlMessage, will always be executed before the 

Figure 18. New Object Dialog
 – 190



  
mental changes are performed. You may change the ordering 
within the list of actions, but if any action uses the returned value 
from another action, it must follow that action in the list. For exam-
ple, if action Foo returns an Integer which is to be used as an argu-
ment for action Bar, then Foo must be listed ahead of Bar in the 
Defined RHS Elements list; this will cause Foo to be executed first 
and the return value will then be available for use in Bar.

Figure 19. Return Variable Dialog
 – 191



  
Rule Editor Operations

Creating a New Rule 
Constructing a new rule is relatively simple.  Select the File  
New  New Rule menu item.  This clears all elements from the 
Rule Editor. If a rule was currently loaded, and it was modified, a 
dialog will be displayed asking if the current rule is to be saved.  
Figure 20 shows the dialog that will be displayed in creating a new 
rule.

The Rule Properties Dialog allows you to provide a name and 
description for the new rule. This information can later be changed 
by selecting the Properties menu item from the Edit menu. Once 
the information for the rule has been entered, select the OK button 
to apply the changes.  Selecting Cancel button will cancel any 
changes to the rule's name or description. If this dialog was dis-
played as a result of selecting the New Rule menu item, selecting 
Cancel will defer naming the new rule. 

Loading an Existing Rule
To load an existing rule, select File  Open.  A list of the rules 
previously defined for the agent will appear.  Load the existing rule 
by either double clicking on its name or by clicking on its name and 

Figure 20. Rule Properties Dialog
 – 192



  
clicking on the OK button. Either selection method causes the rule 
to be loaded into the editor.

Constructing a Simple Mental Condition
The first step in constructing a simple mental condition is to choose 
the operator to be used, usually the EQUAL or NOT_EQUAL operators.  
Next, specify the operands that are to be compared, starting with 
the operand to the left of the operator.  For example, a mental con-
dition might test for equality between an attribute in a PAC variable 
and a string constant.  Each operand can be an instance, a defined 
variable, a constant value, or the result returned from a function 
(e.g., the concatenation of two strings).  To specify an operand, 
choose the correct dialog and select the desired element.  Finally, 
specify the operand on the right side of the operator.  Figure 21 
shows the Values dialog where the string constant is defined.  Enter 
the desired string and click on OK. This causes the string value to 
be entered into the current pattern. When the pattern is complete, 
click on Add to add the current pattern to the list of mental patterns.

Direct Method Invocation
Directly invoking methods allows you to bypass creating a private 
action for a method you want to use in an action pattern. To use 
direct method invocation, you can either pop-up the Defined Vari-
able or Instances dialog. In both dialogs, each non-primitive type is 
represented with a folder icon, and will contain zero or more child 

Figure 21. String Value Dialog
 – 193



  
nodes. The child nodes represent field attributes of the type as well 
as any methods, with attributes listed first. To specify a method to 
be invoked, you must select the desired method and click on the OK 
button. The method invocation will then be inserted into the action 
pattern being built. Now, actions need only be created when you 
want to use the private action to create an initial commitment. Fig-
ure 22 shows this process.

Using a Predicate Method
Predicate methods (i.e., methods that return a Boolean value) 
defined in the PACs may be used to construct mental conditions.  
The available predicate methods are displayed in the Defined Vari-
ables and Instances dialogs in the same way that the PAC attributes 
are displayed.  Click on the method name to select it, then click on 

Figure 22. Direct Method Dialog
 – 194



  
OK to insert the predicate method into the current pattern.  After 
selecting the predicate method you'll need to specify values for any 
parameters required by the method. Figure 23 shows the format for 
the predicate methods on an example PAC in the Defined Variables 
dialog. 

Constructing an Action Statement
Constructing an action statement is straightforward.  Select the 
desired action from the Actions or Built-in Actions lists.  Next, spec-
ify all parameters for the selected action. The Rule Editor automati-
cally creates a variable to hold the value returned by each action 
statement so that the returned value can be used as a parameter in 
other actions or in mental changes.  The tool adds these variables to 

Figure 23. Predicate Methods in the Defined Variable Dialog
 – 195



  
the Defined Variables list so they can be selected for use in other 
RHS patterns.

Note: If an action has not been associated with an instance of a 
PAC, the ConnectAction built-in action must be executed first.  For 
example, if an action named Print has been defined to use the 
print(String) method on a PAC instance named myControlPanel-
Pac and the action has not been associated with the instance, Con-
nectAction(Print, myControlPanelPAC) must be executed before 
Print is executed. The section, “PAC Editor” on page 162, pro-
vides more information about actions and PACs.

Building an Assertion with a New Object
As previously mentioned, an assertion adds a new instance of a 
class to the agent's mental model.  To specify an assertion, first 
select the ASSERT item in the Operators menu from the Actions 
panel. This causes a dialog to appear with a text field and a prompt. 
If you want to associate a name with the instance that will be 
asserted (e.g., you may want to assert a new Location instance 
named currentLocation), type the name into the text field and click 
OK.  If you're not interested in providing a name for the instance, 
just leave the text field blank and click OK to close the dialog.  
After the dialog is closed the assertion template, ASSERT(<>) will 
be added to the mental change accumulator.

Next, click on the New Object button, which will cause the New 
Object dialog to appear, as shown in Figure 24.  This allows you to 
select the class type for the instance.  Click on the name of a class to 
select it.  After you have selected a class type, select a constructor 
from the pull-down menu at the bottom of the dialog, then click on 
OK.  This inserts the new object into the mental change accumula-
tor.  At this point you must specify the parameters for the construc-
tor.  The parameters can be existing objects found in the Instances 
or Defined Variables dialogs, or they can be other new objects cre-
 – 196



  
ated in the New Objects dialog.  It is possible to use new objects as 
parameters to constructors, actions or other functions. 

Closing the Rule Editor
You can close the Rule Editor by selecting the Close item in the 
File menu.  If necessary, AgentBuilder will ask you whether you 
want to save your changes or not.  By selecting Yes you can save 

Figure 24. The New Object Dialog
 – 197



  
all of your changes since the previous save.  If you select No you'll 
revert to the rule configuration last saved. 
 – 198



  
A. Protocol Manager. 
The Protocol Manager is shown in Figure 25. This tool allows you 
to create and view the set of protocols to be used with various agen-
cies. This tool gives you a high-level view of protocols. The Proto-
col Editor is used to define all of the properties needed to use a 
protocol with a specified agency.

Overview
The Protocol Manager has five menus: File, Edit, Tools, Windows 
and Help. The File menu allows you to create new protocols, close 
the Protocol Manager and shut down AgentBuilder. The Edit menu 

Figure 25. The Protocol Manager
 – 199



  
allows you to Cut, Copy, Paste and Delete a protocol. You can use 
the Tools menu to open the Protocol Editor for a selected protocol. 
The Windows menu allows you to quickly and easily switch 
between the various open AgentBuilder tools.

The protocol tree view allows you to view user-defined and system 
protocols. You can create and view any number of protocols. The 
system protocols in the protocol tree are displayed with red text 
labels. The red text labels signifies that the protocols are read-only 
and cannot be altered. A user's personal protocols are displayed 
with black text labels. When a protocol is selected in the left panel, 
the right panel displays general information about the protocol and 
includes a short textual description of the protocol as well as infor-
mation about where the protocol is located. Note that the divider 
between the protocol tree structure and the properties window can 
be moved horizontally to provide more viewing space for the proto-
cols.

Operation
Using the Protocol Tree 
The protocol manager uses the same tree structures found in other 
AgentBuilder tools The protocol manager has three levels in its tree 
structure. The highest level is the Protocols level, which contains 
repository folders, which in turn, contains the defined protocols. 
The repository folders are represented in the tree by a folder icon. 
The protocols are represented without an icon. Any protocols that 
read-only are displayed with red text labels.

Creating a New Protocol
A new protocol can be added to your user's repository folder by 
first selecting the user's repository folder. You would then select the 
New Protocol menu item from either the File menu or the reposi-
tory folder's pop-up menu. This will bring up the dialog shown in 
 – 200



  
Figure 26. The properties of the protocol can be entered into this 
dialog.

Cutting, Copying and Pasting a Protocol 
Protocols can be cut, copied, or pasted. There are two ways to use 
the clipboard functions for a protocol. The first way is to use the 
Edit menu's Cut, Copy and Paste menu items. The other method is 
to use the protocol's pop-up menu for cut and copy, and the reposi-
tory folder's pop-up menu for paste. Whichever method is used, a 
protocol must first be selected before a cut or copy operation. For 
the paste operation, a user or system repository folder must be 
selected. Invalid selections will be ignored. If the folder being 
pasted into already contains the name of the protocol being pasted, 
the protocol to be pasted will resursively have CopyOf prepended to 
its name.

Modifiying Protocol Properties 
The general protocol properties can be modified by right-clicking 
on the appropriate protocol in the tree structure and selecting the 
Properties… menu item from the pop-up menu.

Figure 26. Protocol Properties Dialog
 – 201



  
Deleting Protocols 
To delete a protocol from the protocol tree structure, simple select 
the desired protocol and choose Delete from the Edit menu or from 
the pop-up menu. This will display a confirmation dialog before 
deleting the selected protocol.

Launching Protocol Tools 
You can launch the Protocol Editor tool from the Tools menu. It is 
necessary to first select the desired protocol before launching the 
Protocol Editor. If you launch the Protocol Editor without first 
selecting a protocol, AgentBuilder will remind you by displaying a 
dialog asking you to select a protocol.

Switching AgentBuilder Windows 
To switch between different AgentBuilder windows, select the 
desired window in the Windows menu. This will bring the selected 
window to the foreground.

Closing Protocol Manager 
To close the protocol manager, select the Close item under the File 
menu. This will close the protocol manager window and the Proto-
col Editor, if it is still open. If you have any unsaved changes in the 
Protocol Editor, you will be given a chance to save them.

Exiting AgentBuilder 
To exit from AgentBuilder, select Exit from the File menu. Agent-
Builder will then display a confirmation dialog before actually exit-
ing the system.

Protocol Editor 
The Protocol Editor tool is used to modify the state diagram and 
roles that are associated with a particular protocol. The Protocol 
Editor provides a a dialog for creating and modifying roles, a draw-
 – 202



  
ing canvas for graphically defining states and transitions and a dia-
log for viewing the protocol's state table.

Overview 
The Protocol Editor contains a menu bar with file items: File, Edit, 
Diagram, Windows and Help. The File menu allows you to open 
protocols and save the current protocol. You can also save the pro-
tocol description to a file. The File menu also allows you to close 
the Protocol Editor and shut down AgentBuilder. The Edit menu 
allows you to cut, copy, and paste states. The Delete menu item 
allows you to delete states and transitions. The Diagram menu 
allow syou to modify the current state diagram by adding new 
states or transitions. The dialogs for viewing the state table and the 
roles can also be accessed using the Map menu items. The Map 
menu also provides menu items for clearing the state diagram and 
refreshing the display. A sample state diagram is shown in Figure 
27.

Operation

Creating a New State 
You can create a new state by right-clicking on an unoccupied 
region of the state diagram and selecting New State from the pop-
up menu. This will display the state properties dialog that will allow 
you to enter a name, description, and state type. The state properties 
dialog is shown in Figure 28. The state type provides a graphical 
way of indicating which state is the initial state, which states are 
final states, and which states are normal states. Only one state is 
allowed to be an initial state. You will receive an error dialog if you 
attempt to set more than one state as an initial state. The tool doesn't 
require you specify an initial and final state. The state types provide 
a graphical enhancement of the state diagram view. Clicking the 
OK button will create a new state on the state diagram. This state is 
 – 203



  
represented by a circular node with the state's name as its label. 
Note that the point on the state diagram where you right-click is the 
location where the state is placed. If you decide not to create a new 
state, you can click on the Cancel button and the state diagram will 
remain unchanged. You can also use the Map menu to create a new 
state in a similar manner.

Cutting, Copying and Pasting a State 
States can be cut, copied, or pasted. There are two ways to use the 
clipboard functions for a concept. The first way is to use the Edit 
menu's Cut, Copy and Paste menu items. The other method is to 

Figure 27. State Diagram
 – 204



  
use the state node’s pop-up menus for cut and copy, and the Map's 
pop-up menu for paste. Whichever method is used, a state must first 
be selected before a cut or copy operation. If the map being pasted 
into already contains the name of the state being pasted, the state 
being pasted will recursively have CopyOf prepended to its name.

Creating a New Transition 
You can create a new transition by right-clicking on any unoccu-
pied region of the state diagram and selecting the New Transition 
menu item. Once selected, the cursor will change to a cross-hair 
cursor and you can then click on the starting state and drag the cur-
sor to the ending state. Once a valid starting state and ending state 
have been selected, the Transition Properties dialog will be dis-
played as shown in Figure 29. The Properties Dialog allows you to 
specify a name for the transition and an optional description. 

The rest of the dialog allows you to specify the KqmlMessage that is 
used in the transition. The required Kqml fields are the sender, 
receiver, performative, ontology, and content type. Since the 
sender and receiver fields are required, you must first have some 
roles defined before you can create any transitions. If no roles 
exists, you will see an error when trying to create a new transition 

Figure 28. State Properties Dialog
 – 205



  
(See Creating Roles below). Selecting an ontology will also load 
the selected ontology's objects into the Content Type combo box. 
For the content field, you can only enter a value if the selected con-
tent type is a Java primitive type. Entering a new values into the 
Reply-With combo box will automatically add the new entry to the 
In-Reply-To combo box. All entries will then be saved when the 
protocol is saved so that for any new transitions created, they will 
have the list of all Reply-With entries added. 

Clicking on OK will add the transition between the selected states. 
An arrowhead will be drawn with the arrow pointing towards the 
ending node. Clicking on Cancel will cancel the creation of the 
new transition.

Moving a State 
You can freely move a state node anywhere on the state diagram. 
This can be done by clicking on the desired state node and dragging 
the node to a new location. Transitions will adjust themselves auto-
matically to maintain the connection with the relocated state.

Figure 29. Transition Properties Dialog
 – 206



  
Deleting a State 
You can delete an existing state node by clicking on that node and 
selecting Delete from the pop-up menu. Likewise, a selected state 
can be deleted using the Delete item in the Edit menu. Note that 
when a state is deleted, all links to that state are also deleted.

Deleting a Transition 
You can delete an existing transtion by selecting the transition and 
selecting Delete from the pop-up menu. You can also select Delete 
from the Edit menu with a selected transition.

Viewing and Altering State Properties 
You can view and modify the name, description and type of an 
existing state by selecting Properties… from the state's pop-up 
menu. The state properties dialog will then be shown, and you can 
modify any or all of the state's properties. Clicking on OK will com-
mit any changes that you have made to the state. Clicking on Can-
cel will revert the state to its original properties.

Viewing and Altering Transition Properties 
You can view and modify the name, description and KqmlMessage 
fields of an existing transition by selecting Properties… from the 
state's pop-up menu. The TransitionProperties dialog will then be 
shown, and you can modify any or all of the transition's properties. 
Clicking on OK will commit any changes that you have made to the 
state. Clicking on Cancel will revert the state to its original proper-
ties.

Viewing the State Table 
The state table is generated from the transitions in the state dia-
gram. If you currently have no transitions created, you will be given 
an error dialog and the state table dialog will be shown. Otherwise, 
the state table dialog will appear as shown in Figure 30. The state 
table dialog lets you see the important Kqml message fields for 
 – 207



  
each transition: sender, receiver, performative, content type and 
content. There is a combo box for selecting which role to view the 
state table. Currently, only the All Roles selection is supported.

Viewing Roles 
To view the roles that this protocol is using, select the Diagram  
Roles… menu item. This will display the Roles Dialog as shown in 
Figure 31. The Roles Dialog has two panels: the left panel lists the 
defined roles, and the right panel gives a description of a selected 
role in the left panel.  This dialog also contains a menubar with a 
File and Edit menu. The File menu allows you to create a new role, 
and to close the dialog. The Edit menu gives you cut, copy, paste, 
and delete functions for the role.  The Edit menu also allows you to 
bring up the properties dialog for a selected role.

Creating Roles 
Roles need to be created so that you can create transitions. To cre-
ate a new Role, select the File New menu item.  The Role Proper-

Figure 30. State Table Dialog
 – 208



  
ties dialog will be displayed and will allow you to specify the new 
role's properties. The Role Properties dialog is shown in Figure 
rolePropertiesDialog. The dialog will allow you to specify a name, 
description and instance number for the role. The instance number 
is specified by selecting the Instance combo box. The combo box is 
an editable combo box so that you can enter an integer number to 
specify the maximum number of instances allowed for the role.

Cutting, Copying and Pasting Roles 
The Edit menu items will allow you to cut, copy and paste roles. To 
cut or copy a role, you must first select the role from the left panel, 
then select Copy or Paste from the Edit menu. To paste a role that 
has been cut or copied to the clipboard, select the Paste menu item 
from the Edit menu. The role will then be added to the list of roles 
in the left panel. If a role in the list already has the name of the role 
being pasted, the pasted role will recursively have CopyOf 
prepended to its name until it is unique.

Deleting Roles 
To delete a role from the list, you must first select the role, then 
select Edit  Delete. A confirmation dialog will be shown before 

Figure 31. Roles Dialog
 – 209



  
the role is actually deleted. Once deleted, the role is removed from 
the list.

Viewing and Modifying Role Properties
To view a role's properties, you must first select the role in the list, 
then select Edit  Properties. The Role Properties dialog will 
then be displayed showing the selected role's properties. Once the 
dialog is displayed, you can modify any or all of the roles proper-
ties. Clicking on OK will commit changes made to the role's prop-
erteis. Clicking on Cancel will cancel any changes that have been 
made to the role.

Saving a Protocol 
You can save a state diagram by selecting Save under the File 
menu. You can then close the Protocol Editor and return to it at a 
later time. The save action will save the states and transitions as 
well as their locations relative to each other.

Saving the Protocol to a File 
The state diagram can be saved to a text file by selecting File  
Generate Printable. Selecting this menu item will bring up a file 
dialog for saving a state diagram toa file. By default, the directory 
is set to the current working directory, and the filename is set to 
protocol-name.txt. The text file that is generated will contains a 
text description of the protocol's name and description as well as a 
description of every state and transition that make up the protocol.

Clearing the Protocol 
If you wish to delete everything on the current state diagram and 
start again, you can do so by selecting Clear under the Diagram 
menu item or from the state diagram's pop-up menu. Note that this 
function will remove all states and transitions that have been 
entered. You will be presented with a confirmation dialog before 
actually clearing the state diagram. If you later decide that you liked 
 – 210



  
the original state diagram and you have not yet saved the changes, 
you can just close the Protocol Editor or reload the Protocol Editor 
using the File  Open menu item.

Closing the Protocol Editor 
You can close the Protocol Editor by selecting the Close item in the 
File menu. If you have any unsaved changes, you will be given a 
chance to save them before the tool is closed. 

Role Editor 
The Role Editor is used to assign an agency's agents to roles in a 
particular protocol. Using the Role Editor, you can update any or all 
agents so that necessary rules can be generated for their assigned 
roles.

Overview 
The Role Editor contains a menubar with five menu items: File, 
Edit, Options, Windows and Help. The File menu allows you to 
save the roles. From the File menu, you can also close the Role Edi-
tor and shut down AgentBuilder. The Edit menu allos you to view 
the properties of a selected role. The Options menu allows you to 
assign agents to a selected role, update a particular agent, or update 
all agents that belong to the currently loaded agency.

The Role Editor is made up of two panels: the left panel is a listing 
of the roles for a particular protocol, and the right panel displays a 
description of a selected role. Figure 32 shows the Role Editor.

Operation

Viewing and Modifying Role Properties 
To view a role's properties, select the role in the left panel. The 
role's properties will then be displayed in the right panel. Alterna-
 – 211



  
tively, you can also select the role, then select the Edit  Proper-
ties… menu item. Either way, you will see the Role Properties 
dialog as illustrated in Figure 33. The Role Properties dialog will 
display the role's name, description and maximum number of 
instances allowed. Of these propeties, only the role description can 
be modified.

The role's name and instance number cannot be modified in the 
Role Editor. The roles are created in the Protocol Editor. If changes 
need to be made to a particular role, the changes will have be made 
in the Protocol Editor, and the protocol will then have to be re-
imported into the Agency Manager.

Figure 32. Role Editor
 – 212



  
Assigning Agents to Roles 
In order for a protocol to be successfully applied to an agency, each 
role must be assigned to one or more agents. The only exception is 
when a particular role is specified to have zero or more agents, in 
which case, assigning an agent is optional. To assign one or more 
agents to a role, you must first select the role from the left panel. 
Then, click on the Options  Assign Agent(s), and the Assign 
Agent(s) dialog will be displayed as shown in Figure 34. 

The role being assigned agentsis at the top of the dialog. There are 
two main panels in the dialog: the Available Agents panel lists the 
agents that belong to the currently loaded agency. Also, buttons are 
provided in this panel for adding a selected agent from the list, or 
adding all agents from the list. To add a single agent, first select an 
agent, then click on the Add button. The selected agent will then be 
added to the list in the Selected Agents panel. Clicking on the Add 
All button does not require the user to select the entire list.

The Selected Agents panel will first list any agents that have 
already been assigned to the selected role. Agents can be removed 
from the role by selecting the agent in the list, then clicking on the 
Delete button. Clicking on the OK button will set the changes made 

Figure 33. Role Properties Dialog
 – 213



  
to the role. Also, a check will be done to make sure that the number 
of agents assigned to the role does not exceed the maximum num-
ber of instances allowed for the role. Clicking on the Cancel button 
will cancel any changes made to the role's assignment.

Updating an Agent 
Updating an agent will generate the necessary rules needed for the 
agent to fulfill its assigned role(s). An agent will need to be updated 
whenever the agent has been assigned to a role. To update an agent, 
select the Options  Update Agent… menu item. This will dis-
play the Update Agent dialog as shown in Figure 35. The dialog 
consists of a combo box that contains the agents for the currently 

Figure 34. Assign Agent Dialog
 – 214



  
loaded agency. Select the agent that you want updated, and click on 
the OK button. Clicking on the Cancel button will cancel the agent 
update.

Updating All Agents 
As a convenience, the Role Editor also allows you to update all 
agents for the currently loaded agency. Selecting the Options  
Update All Agents menu item will update all agents. Selecting the 
menu item will then generate the rules needed for each agent to ful-
filly each of its assigned roles.

Saving the Roles 
The roles can be saved by selecting Save under the File menu. You 
can then close the Role Editor and return to it at a later time. The 
save action will save the role assignments to each of the agents.

Switching Windows 
To switch between different AgentBuilder windows, select the 
desired window in the Windows menu. This will bring the selected 
window to the foreground.

Closing the Role Editor 
To close the role editor, select the Close item under the File menu. 
This will close the role editor window. If you have any unsaved 
changes in the role editor, you will be given a chance to save them.

Figure 35. Agent Update Dialog
 – 215



  
Exiting AgentBuilder 
To exit from AgentBuilder, select Exit from the File menu. Agent-
Builder will then display a confirmation dialog before actually exit-
ing the system.
 – 216



1 – 217
C h a p t e r 1

Project Accessories 
Class Library

Chapter Overview

You can find the following information 
in this chapter:

• Project Accessory Classes
• Input and Output
• External Processing
• Threading
• Arguments and Return Values
• PAC Interfaces
• Control Panel Design



Chapter 1: Project Accessories Class Library
A. Project Accessory Classes
A Project Accessory Class (PAC) is a Java class with methods 
which can be invoked by an agent to modify or interact with the 
agent’s environment.  PACs are used to transfer information from a 
user into the agent’s mental model, to display information from the 
agent’s mental model, and for executing actions.

PACs may come from a variety of sources: PACs can be written by 
the developer, may be obtained from commercial off-the-shelf 
packages, or may be freeware downloaded from the Internet. 
Although you can write PACs entirely in Java, there are situations 
where Java alone does not meet the needs of an application. You 
can use the Java Native Interface (JNI) to write non-Java methods 
to handle those situations when an action cannot be implemented in 
Java; C/C++ functions that conform to the JNI can be used to 
implement private actions. You are free to create new methods and/
or integrate existing code (Java, C or C++) into a PAC.

PACs are assembled into an agent’s Project Accessory Class (PAC) 
library, which contains all of the domain-specific code the agent 
requires for operation in its domain.

Input and Output
Sometimes PACs are used to implement a control panel for an 
agent.  We describe a BuyerSeller example where a PAC is used as 
the control panel for the Buyer agent; it allows the user to choose a 
product and amount to be purchased, and it displays the buyer’s 
inventory and account information. Several questions to consider 
when designing a control panel are discussed in the section entitled 
“Control Panel Design” on page 224.

AgentBuilder provides a simple built-in PAC for input, the Input-
Dialog, which can be easily customized and launched from an 
1 – 218



Chapter 1: Project Accessories Class Library
agent, and which can be used to get input of any simple data type 
from the user.  This is adequate in many situations, such as getting 
string or integer values from the user.  Complex data types with 
more than a single field, however, will require the developer to cre-
ate a PAC which allows input of the fields of the complex data type, 
and which performs any domain-specific testing of the inputs. Fig-
ure 36 shows the built-in Input Dialog, customized for use in a 
travel agent application. 

AgentBuilder provides a simple built-in PAC for output, the Output 
Dialog, which will display a message from the agent. shows the 
built-in Output Dialog. 

AgentBuilder also provides a built-in console which displays pro-
gram output and error output, and allows the user to freeze the dis-
play and save output to a file. For many projects, this built-in 

Figure 36. Input Dialog

Figure 37. Output Dialog
1 – 219



Chapter 1: Project Accessories Class Library
console will be adequate for monitoring the agent and displaying 
results to the user. Figure 38 shows the built-in console. 

Other projects, however, will require the developer to create a PAC 
to display the agent’s output in a domain-specific manner.  In the 
BuyerSeller example PACs are used for the display of the Buyer 
agent’s and Seller agent’s output.  Although it would be possible to 
display their outputs in the built-in consoles, the use of custom 
PACs allows the different quantities of interest (e.g., account bal-
ance) to be displayed in separate text areas for easier viewing.

Figure 38. The Console
1 – 220



Chapter 1: Project Accessories Class Library
External Processing
PACs are also used to modify an agent’s environment, perform 
domain-specific processing, and facilitate information retrieval out-
side of an agent’s mental model.  PACs can be used to access a file 
and return a piece of information, or make a database query and 
return the result to the agent’s mental model.  An agent may use a 
PAC to perform data analysis, e.g., a PAC could analyze a volume 
of data using a neural network and report the results back to the 
agent for use in the agent’s reasoning.  An agent’s mental model is 
based on symbolic reasoning; using PACs, they can also perform 
various types of sub-symbolic reasoning when that is appropriate to 
the problem domain.

For example, an agent designed for a loan approval program could 
have several PACs for input, output, and processing. An input PAC 
could be used to extract all the data for the next loan applicant from 
a file containing loan applications, or perhaps from a graphical 
interface used by the applicant.  The input PAC would provide the 
agent’s mental model with all the parameters of interest in the loan 
application domain (applicant’s name, social security number, 
income, etc.). The agent could perform some preliminary process-
ing such as immediately rejecting the application if the income 
level is below some threshold, for example. This could trigger the 
display of another interface (another PAC, or another method on 
the input PAC) to notify the applicant of the decision or ask for 
confirmation of the income level.

The agent could have a PAC that interacts with a database of credit 
histories.  The agent would supply the PAC with the applicant’s 
parameters and the PAC would perform a database query at one of 
the credit history services and return a rating to the agent.  Or the 
agent could supply a neural network PAC with the applicant’s 
parameters and receive a rating of the applicant.  Perhaps both 
methods would be used and the results would be further analyzed 
1 – 221



Chapter 1: Project Accessories Class Library
by the agent, using reasoning developed from the experience of 
human loan-approval officers.  Finally, the agent would use a PAC 
to display its recommendation and its justifications to a human loan 
officer or directly to the applicant.

For another example, an agent could be used to control a piece of 
machinery in an industrial plant.  Such an agent might have PACs 
to measure physical quantities such as temperature or RPM, and 
other PACs to perform physical activities such as moving an actua-
tor or halting the machine.  This type of agent would probably also 
have a PAC for a control panel to allow a human user to set param-
eters in the agent or override the agent’s normal processing.  Java 
PACs used to control physical devices might be provided by the 
manufacturer of the device, or the developer may need to create a 
Java PAC to encapsulate a C-language device driver provided by 
the manufacturer.

Threading
Not all private actions are suitable for running on the agent’s execu-
tion thread, i.e., as part of the sequence of instructions within a 
computational process. Actions running on the same thread as the 
agent must execute relatively quickly, because the agent is blocked 
until the private action finishes execution. To prevent blocking, it 
may be necessary to run a private action on its own thread. Running 
actions on their own threads allows long-running private actions to 
execute without interfering with the basic agent cycle. For example, 
control panels require execution on a separate thread because of 
their long-running nature.

PACs are able to communicate information back to the agent in two 
ways. For non-threaded actions, information is returned to the agent 
via a return value. For threaded actions, information can only be 
returned to the agent in a message, such as a KQML message. For 
1 – 222



Chapter 1: Project Accessories Class Library
example, a control panel can send messages back to an agent as the 
user enters information.

It is possible, but not generally recommended, for a non-threaded 
action to return results to an agent via a message.  It is also possible 
for an agent to send a message to a PAC, instead of invoking a 
method on the PAC.  Thus it’s possible to use messages for all 
agent/PAC communication, but this is not generally recommended.  
It’s much more efficient to use method invocations and return val-
ues for communication between an agent and a non-threaded PAC, 
and use method invocations to start a threaded PAC and messages 
only for returning results from a threaded PAC.

Arguments and Return Values
There are no restrictions on the types used for communication of 
data between an agent and a PAC, except that messages cannot con-
tain primitive values.  Any Java object type or primitive type may 
be passed from the agent to a PAC method in a method invocation.  
For a non-threaded action any Java object type or primitive type 
may be returned as the return value of a method by a PAC to an 
agent.  For a threaded action, which must return a value to the agent 
via a message, any Java object type may be returned to the agent as 
the content of a message.

PAC Interfaces 
There are two AgentBuilder interfaces that may be implemented by 
PACs; both are optional and only need to be used in situations 
where a particular functionality is desired.

The AgentBuilderDestroyablePac interface defines the API that 
will be used by the agent engine when the engine is destroyed via 
the built-in action ShutdownEngine or via a signal from the console. 
This interface defines a destroy method which takes no arguments.  
1 – 223



Chapter 1: Project Accessories Class Library
Before the engine is destroyed it will invoke the destroy method on 
all PAC objects which declare they implement the AgentBuilderDe-
stroyablePac interface.

If a PAC does not implement the AgentBuilderDestroyablePac 
interface and the PAC is descended from java.awt.Window, then 
the java.awt.Window dispose method will be invoked on the PAC 
object. This will dispose of PAC control panels when the engine is 
destroyed. If you want a PAC interface object to remain visible 
after the engine is destroyed, the PAC must implement the Agent-
BuilderDestroyablePac interface and use an empty destroy 
method.

 The AgentBuilderRestorablePac defines the API that will be used 
by the agent engine when saving/restoring a PAC object.  The for-
mat of the string used to represent a PAC can be chosen by the 
developer. The methods are:
String toPacString() 
void fromPacString(String pacString)

To create a saveable/restorable PAC these methods must be imple-
mented and the PAC must have a constructor which takes no argu-
ments.  The save/restore functionality is currently not available.  
More information will be provided when this functionality becomes 
available.

Control Panel Design
We now look at some of the issues in designing a control panel for 
an agent. Questions to consider when building a control panel for 
an agent include:

(1) What information will be displayed to the user?

(2) What inputs will the user be allowed to make?
1 – 224



Chapter 1: Project Accessories Class Library
(3) What information will be stored in the control panel?

(4) What information will be stored in the mental model of the 
agent?

(5) What information will flow from the agent to the control panel?

(6) What information will flow from the control panel to the agent?

Questions (1) and (2) are standard interface design issues and will 
not be discussed here. Questions (3) through (6) are discussed in 
turn below.
What information will be stored in the control panel?

Ideally you should store all interface information (e.g., button 
color) in the control panel, and you should store all domain infor-
mation in the mental state of the agent.  This is only a guideline, 
however, and many practical systems will not follow this guideline 
completely.  For example, in some projects it may be convenient to 
perform some basic processing of inputs, such as range-checking of 
numerical inputs, in the control panel.  This requires that some 
domain information (e.g., the limits of the acceptable range) be 
stored in the control panel.  In other projects it may be more appro-
priate to do all processing of inputs in the agent's mental model.
What information will be stored in the mental model of the agent?

All domain information should be stored in the mental model of the 
agent so the information can be used in reasoning.  In some situa-
tions it may be necessary to store some of the domain information 
both in the agent's mental model and in the control panel.  This may 
be necessary in order to reduce the amount of information 
exchanged between the agent and the control panel or for efficient 
display of the information.  Note that this can lead to problems if 
the information in the agent's mental model and the information in 
the control panel get out-of-sync.  
1 – 225



Chapter 1: Project Accessories Class Library
What information will flow from the agent to the control panel?

In general, information will be transmitted from the agent to the 
control panel via method calls on the control panel object.  In the 
HelloWorld example the agent sends a String to the control panel 
by invoking HelloWorldFrame::print(String), which appends the 
string to the text area in the frame.

Any Java type or user-defined type can be used as the argument of a 
method call on the control panel object.  In the BuyerSeller exam-
ple the buyer agent sends the accepted PriceQuote object to its con-
trol panel for display to the user.  The PriceQuote class is a PAC 
defined by the user; it contains information important to the agents 
in that domain.

The control panel class will need a method which can be called by 
the agent for every distinct information type or activity.  Assume, 
for the sake of an example, that the HelloWorld agent needs to dis-
play integer values in addition to the “HelloWorld!”  strings.  A 
second print method could be added to the HelloWorldFrame class, 
perhaps print(int) or print(Integer).  This new print method 
would be something like:
public void print( Integer i )
  {
    _textArea.append( “Current integer = “ + i.toString() );
  }

The methods invoked by the agent are not restricted to displaying 
values; if the agent needs to modify the internal state or behavior of 
the control panel, a method could be added to the control panel 
class to modify its state. For example, the agent could hide the con-
trol panel and make it reappear at a later time, perhaps in response 
to some event detected by the agent.  To hide the window a hide() 
method could be added to the control panel class, something like:
1 – 226



Chapter 1: Project Accessories Class Library
public hide()
  {
     this.setVisible( false );
  }

What information will flow from the control panel to the agent?

Information will be transmitted from the control panel to the agent 
via KQML messages.  Information can be transmitted via KQML 
performatives, e.g., ‘tell’ or ‘achieve’; via other built-in KQML 
fields such as Reply-With or In-Reply-To; or contained in the Con-
tent field of the KQML message.  The Content field can contain any 
Java object; the agent receiving the message can invoke methods on 
the content object to extract information.

The choice of KQML field(s) to use when transmitting information 
depends on the complexity of the information and the overall 
design of the system.  A simple system might allow all information 
from the control panel to be transmitted via the KQML performa-
tives without any need for the Content field.  Other systems will 
require message strings to be sent in the Content field, and more-
complex systems might require PACs to be sent as the message 
content.

Whatever mechanism is used it is imperative that the sender and 
receiver agree on the message formats, otherwise the messages will 
not have the desired effects.  If the control panel sends a message 
with the string “quit” as the content object, but the agent expects the 
string “Quit”, the message will not trigger the desired behavior in 
the agent.  Similarly, if the control panel sends a message with Per-
formative = ‘tell’ but the agent expects a message with Performa-
tive = ‘achieve’, the message will have no effect.  It is the 
responsibility of the system designer to ensure that the control 
panel and the agent agree on message formats.
1 – 227



Chapter 1: Project Accessories Class Library
Information flow from the control panel will usually be triggered 
by a user event (e.g., a button push), so messages will usually be 
sent from within callback methods.  In the HelloWorld example, all 
messages are sent from the HelloWorldFrame::actionPerformed 
method, which is registered as the callback method for events in the 
HelloWorldFrame. This example is simple enough that only a single 
callback method is needed and the two button-push events can be 
differentiated by action commands (in this example, button labels 
are used). Complex control panels may require several callback 
methods or even separate callback classes, but their construction 
and operation will be similar to the actionPerformed method in this 
example.
1 – 228



Chapter 1: Project Accessories Class Library
B. Building a Control Panel: The HelloWorld Exam-
ple

This section shows the step-by-step development of a simple con-
trol panel for the HelloWorld agent.  Steps (1) through (4) describe 
the code that is needed in the PAC, HelloWorldFrame.java.  Steps 
(5) through (8) describe the rules in the RADL file HelloWorld.radl 
that interact with the PAC (in this simple example, all rules interact 
with the PAC).  Development of the system will not always proceed 
from (1) through (8) in that order; it may be better to build the rules 
first and later develop the PACs, or build the rule and PACs 
together, incrementally.
(1) Define a constructor.  

This will require at least one argument, a PacCommSystem, which 
will be supplied by the agent.  Some control panels may require 
other arguments as well.  For example, a control panel constructor 
may also use a String argument to get the agent’s name for the 
frame title.  The constructor in HelloWorldFrame.java is the sim-
plest possible constructor:
public HelloWorldFrame( PacCommSystem pacCommSystem )
  {
     _communicationSystem = pacCommSystem;
  }

This constructor stores the PacCommSystem object into the data 
member _communicationSystem, so it will be available for use later.  
It would be possible to build the control panel in the constructor, 
but that’s not done here.  Building the control panel can be time 
consuming, so we wait and do it on the separate thread used for dis-
playing the interface.
1 – 229



Chapter 1: Project Accessories Class Library
(2) Write the run() method, define the control panel.  

Any class intended for use as a control panel should implement the 
Runnable interface so that it can be run on a separate thread, hence 
the need for a run() method.  Writing the code for the control panel 
is a standard Java programming task, involving all the usual thrills 
and frustrations of GUI development.  The HelloWorldFrame fea-
tures a very simple interface with a text area to display output from 
the agent, and two buttons to send messages to the agent.  As men-
tioned in step (1), it’s usually better to build the control panel in the 
run() method than in the constructor because building the control 
panel can be slow and may cause the engine cycle to be delayed if 
it’s done on the main execution thread.  All code in the run() 
method can execute on a separate thread so the engine cycle is not 
delayed.
(3) Write an event handler method(s) to handle the events generated by the 
control panel.  

This may require an actionPerformed method, and/or itemState-
Changed method, and/or some internal classes or separate callback 
classes.  The event handler code will depend on the type of compo-
nents used in the interface, but will usually be similar to the code in 
HelloWorldFrame::actionPerformed.  Events generated by the con-
trol panel will cause messages to be sent to the agent.  The informa-
tion required by the agent may be contained in the message 
attributes (e.g., performative) or in the content object contained in 
the message.

The control panel’s event handler code in the Java file must be in 
agreement with the message handling rules in the RADL file.  As 
mentioned in the previous section, the same message protocol must 
be used by the sender (the control panel) and receiver (the agent), 
otherwise the message will not be interpreted correctly.
1 – 230



Chapter 1: Project Accessories Class Library
In the current example, when the control panel was built in the 
run() method, the action command “Print” was associated with a 
button-push of the printButton object, in the statement:
printButton.setActionCommand( PRINT_COMMAND );

Then the HelloWorldFrame object itself was registered as the call-
back object for the button-push, in the statement:
printButton.addActionListener( this );

After the user pushes the print button the sequence of events lead-
ing to a print request from the control panel to the agent are as fol-
lows:

• The Java event dispatcher invokes actionPerformed(Action-
Event) on the registered callback object, which is the Hel-
loWorldFrame object itself.

• The callback method HelloWorldFrame::actionPer-
formed(ActionEvent) instantiates a new KqmlMessage object, 
which gets initialized with all fields empty.

KqmlMessage message = new KqmlMessage();

The callback method tests the action command and determines that 
the current invocation is a print request, so the callback method sets 
the performative to “achieve” and the content to the string “Say 
Hello”.

message.setPerformative(“achieve”);
message.setContent(“Say Hello”);

• The callback method invokes sendKqmlMessageToAgent(KqmlM-
essage) on its PacCommSystem object, _communicationSystem.  
This method will set the sender and receiver fields in the mes-
sage and send the message to the agent.
1 – 231



Chapter 1: Project Accessories Class Library
_communicationSystem.sendKqmlMessageToAgent(message);

The agent in this system will have a rule which recognizes an 
inbound message with Performative = “achieve” and the string 
“Say Hello” for the message content.  The message will cause the 
agent to assemble a string with “HelloWorld!” and its belief about 
the current time, which it will then transmit to the control panel via 
the Print private action.
(4) Write the method(s) to display output from the agent.  

The type of output to display will be determined by the type of data 
being output from the agent’s mental model.  In this example the 
agent will use the PAC to print a string in a text area, so the method 
will be named print and will take a String argument.  The choice of 
method name and argument list is up to the designer of the system, 
but must agree with the data types in the agent’s mental model.  
Here the print method appends the string sent in by the agent to the 
text area in the control panel, which displays the string to the user.
public void print( String stringFromAgent )
   {
      _textArea.append( stringFromAgent + “\n” );
   }

In a more complex control panel there may be several print meth-
ods for different types of data output from the agent.

(5) Write a rule to initialize the control panel object. 

Initialization of a control panel can be performed at agent start-up 
or during execution as the result of the firing of a rule.  The main 
difficulty in constructing a control panel is the initialization of a 
PacCommSystem object with the agent’s Internet address and the con-
trol panel name.  In the HelloWorld example the PacCommSystem 
object is constructed as an argument to the HelloWorldFrame con-
structor.  This occurs in the first rule in HelloWorld.radl in Figure 39.
1 – 232



Chapter 1: Project Accessories Class Library
The Build and Launch HelloWorldFrame rule gets activated by an 
Agent belief with instance name startupTime, which is automatically 
created by the agent engine when the RADL file contains a startup-
Time belief in the initial agency beliefs section.  When this rule fires 
a PacCommSystem object gets constructed from the agent's AgentInfo 
object (which contains the Internet address and related information) 
and a name assigned to the PAC by the agent (here, “Hel-
loWorld:PAC”).  The new PacCommSystem object then becomes an 
argument to the HelloWorldFrame constructor, which creates a PAC 
instance.  The new HelloWorldFrame instance is given the instance 
name myHelloWorldFrame and is asserted into the agent's mental 
model.   

The name stored in the PacCommSystem by the agent is used for com-
munication between the PAC and the agent.  Messages sent from 
the PAC to the agent will have the sender name set to the name in 
the PacCommSystem, and that is the value the agent will look for 
when expecting a message from the PAC.  The name stored into the 
PacCommSystem does not need to be the same as the instance name 
of the PAC, although the same name can be used for both.  The 
PAC instance name is used when testing for the existence of the 

WHEN:
IF:
1. ( BIND startupTime )
THEN:
1. SET_TEMPORARY $helloWorldFrameVar TO    

HelloWorldFrame( PacCommSystem(
SELF.agentInfo, "HelloWorldFrame:PAC" )) 

2. DO $helloWorldFrameVar.run() 
3. ASSERT( "myHelloWorldFrame" $helloWorldFrameVar ) 
4. DO SleepUntilMessage()

Figure 39. Build HelloWorldFrame Rule
1 – 233



Chapter 1: Project Accessories Class Library
PAC instance, e.g., (BIND myHelloWorldFrame).  The name stored 
into the PacCommSystem is used when testing an incoming message 
to see whether it was sent by the PAC, e.g., (?message.sender 
EQUALS “HelloWorld:PAC”).
(6) Write rules to handle the messages sent by the control panel. 

Using the protocol developed when designing the event handler for 
the PAC, write rules that accept the messages sent by the PAC.  The 
name of the PAC was stored into the PacCommSystem in the Build Hel-
loWorldFrame rule, and that same PAC name will be used as the 
Sender for all messages sent by the PAC.  The Print Greeting rule 
tests the Sender field of the message to ensure that a received mes-
sage came from the PAC.  As mentioned in step (3) above, a print 
request message will have performative = “achieve” and the mes-
sage content will be the string “Say Hello”, which is exactly what is 
tested here. See the code segment in Figure 40.

This rule then gets the current time from a built-in currentTime belief 
that is always present in the agent’s mental model, and concatenates 
the time string onto its greeting and invokes the Print action.  The 

WHEN 
1. ( %message.sender EQUALS "HelloWorld:PAC" ) 
2. ( %message.performative EQUALS "achieve" ) 
3. ( %message.contentType EQUALS String ) 
4. ( %message.content EQUALS "Say Hello" )
IF:
THEN: 
1. DO myHelloWorldFrame.print ( Concat( "Hello World! The time is ",

currentTime.string )) 
2. DO SleepUntilMessage()

Figure 40. Print Greeting Rule
1 – 234



Chapter 1: Project Accessories Class Library
Print action will invoke the print(String) method on the myHel-
loWorldFrame object, which will display the string from the agent in 
the text area on the control panel.
1 – 235



Chapter 1: Project Accessories Class Library
C. Building a Control Panel: A BuyerSeller PAC 
Example

This section shows the step-by-step development of a control panel 
for the buyer agent in the Buyer/Seller example. This example is 
considerably more complicated than the HelloWorld agent exam-
ple; you may wish to read through Chapter 9 in the User’s Guide 
before reading this section.

The buyer agent uses a control panel to allow the user to select the 
product and quantity that the buyer agent will attempt to buy from 
store agents, and to display the buyer's inventory and account bal-
ance.  The seller agents use display panels to display their invento-
ries and their account balances.  Both the buyer's and seller's 
interfaces also display information printed by the agents to indicate 
which messages have been received and what actions have been 
taken. Figure 41 and Figure 42 show these control panels.    

In addition to the control panel PACs, the buyer and seller agents 
also use PACs to represent entities in the problem domain and to 
store and transfer information.  In this example a PriceQuote PAC 
is used to record product name, quantity, store name, and the 
quoted price.  A PriceQuote object is sent from the BuyerFrame 
control panel to the buyer agent in a KQML message and then for-
warded to each store agent known to the buyer agent.  The store 
agents fill in the PriceQuote objects with their store names and 
quoted amounts and return the completed PriceQuote objects to the 
buyer agent.  The buyer agent uses the information in the Price-
Quote objects to determine the best deal and invokes methods on 
the BuyerFrame control panel with the PriceQuote objects as argu-
ments to display the quotes to the user. The construction of data-
storage PACs such as PriceQuote will not be discussed in this sec-
tion. Here we'll assume they've already been built in the Object 
1 – 236



Chapter 1: Project Accessories Class Library
Modeling Tool and are available for use when designing the control 
panel and building the rule base.

Steps (1) through (6) describe the code that is needed in the PAC, 
BuyerFrame.java.  Steps (7) through (12) describe the rules in the 
RADL file buyer.radl that interact with the BuyerFrame PAC.  As 
was mentioned in the previous example, development of the system 
will not always proceed from (1) through (12) in that order.  The 
ideal order of construction is: data-storage PACs, then the interface 
PACs, then the rules. It will usually be necessary to iterate through 
the process several times, adding or modifying PACs, adjusting the 
rules, etc. 
(1) Decide what data must be stored in the control panel object. 

This will depend on the type of information that will be displayed 
to the user and what kinds of input will be allowed. For the Buyer-
Frame PAC, the user will be allowed to specify a product from a list 

Figure 41. BuyerFrame PAC Buyer 
1 – 237



Chapter 1: Project Accessories Class Library
Figure 42. SellerFrame PACs
1 – 238



Chapter 1: Project Accessories Class Library
of known products, so a java.awt.Choice will be used.  To specify 
the quantity to shop for, the user will be allowed to type a number 
into a java.awt.TextField, or accept a default quantity.  The 
_messageTextArea, _inventoryTextArea, and _accountTextField 
are java.awt components that will display information to the user.  
The _pacCommSystem is a built-in AgentBuilder component that 
enables communication between a PAC object and its parent agent; 
this must be supplied by the parent agent.  The _buyerName string 
must also be supplied by the parent agent.  Finally, two hashtables 
provide easy lookups of data-storage PAC objects that are used by 
the BuyerFrame. Figure 43 shows the data members of the Buyer-
Frame PAC.
(2) Define a constructor for the control panel PAC.  

This will require at least one argument, a PacCommSystem which will 
be supplied by the agent.  The constructor in BuyerFrame.java 
stores data into the object and initializes its hashtables. Figure 44 
shows the constructor for the BuyerFrame PAC.

private Choice _productChoice; 
private TextField _quantityTextField;

private TextArea _messageTextArea;    
private TextArea _inventoryTextArea;
private TextField _accountTextField;

private PacCommSystem _pacCommSystem;
private String _buyerName;

private Hashtable _productTable;
private Hashtable _inventoryTable;

Figure 43. Java Code Segment
1 – 239



Chapter 1: Project Accessories Class Library
It would be possible to build the interface in the constructor, but 
that's not done here.  Building the interface can be time consuming, 
so it’s best to wait and do it in the run() method.  This allows us to 
build the interface on the separate thread used for displaying the 
interface.

Note, however, that we need to initialize several of the components 
here in the constructor because it's possible that they'll be used 
before the initialization of the interface is complete. Although long-
running actions such as building an interface should usually be 
done on a separate thread, during initial development it may be eas-
ier to build the interface in the constructor.  Then, when everything 
is working well, move the bulk of the interface initialization code to 
the run() method.  Finally, determine which components could 

public BuyerFrame( PacCommSystem pacCommSystem, String buyerName )   
{  

// Store the pac comm system and buyer name into this object. 
_pacCommSystem = pacCommSystem;  
_buyerName = buyerName;  

// Initialize the product and inventory tables to empty hashtables.
_productTable = new Hashtable();
_inventoryTable = new Hashtable();

// Initialize the components which may be needed before the interface      
/// is fully built.
_productChoice = new Choice();   
_productChoice.add( PRODUCT_CHOICE_LABEL );

_inventoryTextArea = new TextArea( EMPTY_STRING,                                          
INV_TEXT_AREA_ROWS,                                          
INV_TEXT_AREA_COLS,                                          
TextArea.SCROLLBARS_VERTICAL_ONLY );

_accountTextField = new TextField( EMPTY_STRING );  
}

Figure 44. Java Code Segment
1 – 240



Chapter 1: Project Accessories Class Library
possibly be accessed before the interface is complete, and either 
adjust the rules or move the initialization of some components back 
into the constructor.

(3) Write the run() method, build the interface.  

Any class intended for use as a control panel should implement the 
runnable interface so that it can be run on a separate thread, hence 
the need for a run() method.  Writing the code for the control panel 
is a standard Java programming task involving all the usual thrills 
and frustrations of GUI development.  The BuyerFrame features 
several java.awt components for input and output.  As mentioned 
in step (2), it's usually better to build the control panel in the run() 
method than in the constructor because building the control panel 
can be slow and may cause the engine cycle to be delayed if it's 
done on the main execution thread.  All code in the run() method 
can execute on a separate thread, so the engine cycle is not delayed.  
(4) Write any methods that are needed to initialize the interface PAC with 
data from the agent. 

In some situations all data can be transferred via the PAC construc-
tor arguments, but in other situations extra methods may be needed.  
BuyerFrame has an addProduct(Product) method which the buyer 
agent invokes once for every Product object (a data-storage PAC 
defined for this project) in the initial objects section of the RADL 
file.  These Product objects are used to populate the choice box in 
the interface; the product choices offered to the user are exactly the 
same as those known to the buyer agent.  

(5) Write an event handler method(s) to handle the events generated by the 
control panel.  

This may require an actionPerformed method, and/or itemState-
Changed method, and/or some internal classes or separate callback 
classes.  The event handler code will depend on the type of compo-
nents used in the interface, but will always be similar to the code in 
1 – 241



Chapter 1: Project Accessories Class Library
BuyerFrame::actionPerformed.  Events generated by the control 
panel may cause changes in the interface and/or messages to be sent 
to the agent.  The information required by the agent may be con-
tained in the message attributes (e.g., performative) or in the con-
tent object contained in the message.

The actionPerformed method for the BuyerFrame PAC will handle 
the events generated when the user clicks on the Shop! or Quit but-
tons. Events generated from other activities, such as selecting a 
product or typing a number for the quantity, will not be handled, 
but those other activities will change the state of the 
_productChoice or _quantityTextField.  Then when the Shop! 
button event is handled the latest values for product and quantity 
will be extracted from the interface components.

The control panel's event handler code in the Java file must be in 
agreement with the message handling rules in the RADL file.  As 
mentioned in the previous section, the same message protocol must 
be used by the sender (the control panel) and receiver (the agent), 
otherwise the message will not be interpreted correctly.

In the current example, when the control panel was built in the 
run() method, the Shop! button label was associated with a button-
push of the shopButton object in the statement:
  shopButton.setActionCommand(SHOP_BUTTON_LABEL);

Any string could be used for this command string, as long as the 
comparison done in actionPerformed tests for the same string.  In 
this example the button labels are each used only once so the labels 
can also be used as command strings to distinguish between but-
tons.  In an interface containing several buttons with the same label, 
unique command strings will need to be defined for each button.

Next, the BuyerFrame object itself was registered as the callback 
object for the button-push in the statement:
1 – 242



Chapter 1: Project Accessories Class Library
  shopButton.addActionListener(this);

 After the user pushes the Shop! button the following will occur:

• The Java event dispatcher invokes actionPerformed(Action-
Event) on the registered callback object, which is the Buyer-
Frame object itself.

• The callback method BuyerFrame::actionPerformed(Action-
Event) instantiates a new KqmlMessage object, which gets ini-
tialized with all fields empty.

        KqmlMessage message = new KqmlMessage();

• The actionPerformed method extracts the name of the selected 
product from the _productChoice data member, and looks up 
Product object associated with the selected product name in the 
_productTable hashtable.  The Product object is used to get the 
appropriate unit name, such as gallon of milk or loaf of bread. 
Then the numeral in the _quantityTextField is converted to a 
number.  A new PriceQuote object is built using the values 
extracted from the interface components. This PriceQuote 
object (a data-storage PAC defined for this project)   will be the 
content of the message sent to the buyer agent.  At this point it's 
not really a price quote, it's an object which will be interpreted 
as a request to shop for the named product.

PriceQuote priceQuote = new PriceQuote(productName,
quantity, unitName);

• The actionPerformed method sets the KQML message perfor-
mative to “forward” and the content to the new PriceQuote 
object.  The   performative “forward” is used so the buyer agent 
will forward the message on to the store agents.

        message.setPerformative(“forward”); 
message.setContent(priceQuote);

• The actionPerformed method invokes sendKqmlMessageToAg-
ent(KqmlMessage)   on its PacCommSystem object, 
1 – 243



Chapter 1: Project Accessories Class Library
_pacCommSystem.  This method will set the sender and receiver 
fields in the message and send the message to the agent.

        _pacCommSystem.sendKqmlMessageToAgent(message);

The agent in this system will have a rule which recognizes an 
inbound message with Performative = “forward” and a PriceQuote 
object for the message content.  The message will cause the agent to 
forward the message on to all known store agents and assert a belief 
about its current goal (purchase the specified quantity of the speci-
fied product). 
(6) Write the method(s) to display output from the agent.  

The type of output to display will be determined by the type of data 
being output from the agent's mental model.  In this example the 
agent will use the interface PAC to print status strings in a text area, 
print the buyer's current inventory in another text area, and print the 
buyer's current account balance in a text field.  

The printing of status strings will be done by the methods dis-
playMessage(String) and displayPriceQuote(PriceQuote).  Both 
of these methods will write output to the same text area, but differ-
ent methods are used so that the extraction of values from the price 
quote doesn't need to be done in the buyer agent's rules.  It's much 
easier to use the displayPriceQuote method to extract the store 
name, product name, and quoted price, then format and print them.  
This simplifies the work of the buyer agent and leaves the format-
ting details to the Java code in the BuyerFrame PAC.

The displayInventory(InventoryRecord) method updates a list of 
InventoryRecord objects (another data-storage PAC defined for 
this project) then prints the list to the inventory text area.  The dis-
playAccount(float) method updates the display of the account bal-
ance in the text field at the bottom of the interface.
1 – 244



Chapter 1: Project Accessories Class Library
Steps (7) through (12) describe some of the rules that interact with 
the BuyerFrame PAC.
(7) Write a rule to initialize the control panel object. 

Initialization of a control panel can be performed at agent start-up, 
or during execution as the result of the firing of a rule.  The main 
difficulty in constructing a control panel is the initialization of a 
PacCommSystem object with the agent's Internet address and the con-
trol panel name.  In this example the PacCommSystem object is con-
structed as an argument to the BuyerFrame constructor.  This occurs 
in the Build BuyerFrame rule in buyer.radl shown in Figure 45.

This rule will be activated by an Agent belief with instance name 
“SELF”, which is automatically created by the agent engine when 
the RADL file contains a SELF belief in the initial agency beliefs 
section.  A PacCommSystem object gets constructed from the agent's 
AgentInfo object (which contains Internet address and related 
information) and the PAC's name, which is in the temporary vari-
able ?pacName.  BuyerFrame requires two arguments in its construc-

WHEN:
IF: 
1. ( BIND SELF ) 
THEN: 
1. SET_TEMPORARY $pacName TO 

Concat( SELF.agentInfo.name, ":ControlPanel" ) 
2. ASSERT( "pacName" $pacName ) 
3. ASSERT( "buyerFrame" BuyerFrame( PacCommSystem

( SELF.agentInfo, $pacName ), SELF.agentInfo.name )
DO RemoveRule (“Build BuyerFrame”)

Figure 45. Build BuyerFrame Rule
1 – 245



Chapter 1: Project Accessories Class Library
tor: a PacCommSystem object and a String with the buyer agent's 
name.
(8) Write the rule(s) to transfer initial data from the agent to the interface. 

In this example the buyer agent's mental model will be initialized 
with several Product objects; the control panel must be initialized 
with the same objects. The Add Product rule will be activated once 
for each Product object in the agent's mental model, and will cause 
the control panel to add the product to the product choice box that is 
displayed to the user. See the code segment in Figure 46. 

(9) Write a rule to display the control panel.

After the initial data has been loaded into the control panel object, 
the interface can be displayed.  The Start Control Panel rule invokes 
the run() method on the buyerFrame object, which will display the 
interface.  Construction of the interface will occur on a separate 
thread, so the agent's main thread will not be delayed.  Note that in 
many applications there will not be a need for a separate rule to add 
initial data (e.g., the Add Product rule) and so the interface display 
rule can be combined into the interface initialization rule.  In this 
example the separate step is required because of the varying num-
ber. Figure 47 shows the BuyerFrame interface after it has been ini-
tialized. The code is shown in Figure 48.  

WHEN:
IF: 
1. ( BIND buyerFrame ) 
2. ( BIND ?product ) 
THEN: 
1. DO buyerFrame.addProduct( ?product )

Figure 46. Add Product Rule
1 – 246



Chapter 1: Project Accessories Class Library
(10) Write rules to handle the messages sent by the control panel. 

Using the protocol developed when designing the event handler for 
the PAC, write rules that accept the messages sent by the PAC.  The 
name of the PAC was stored into the PacCommSystem in the Build 
BuyerFrame rule, and that same PAC name will be used as the 
sender name for all messages sent by the PAC.  The following rule 

Figure 47. BuyerFrame PAC

Figure 48. Start Control Panel Rule

 WHEN:
IF: 
1. ( BIND buyerFrame ) 
2. ( BIND accountBalance ) 
THEN: 
1. buyerFrame.run() 
2. buyerFrame.displayAccountBalance( accountBalance ) 
3. DO RemoveRule( "Add Product" ) 
4. DO RemoveRule( "Start Control Panel" )
1 – 247



Chapter 1: Project Accessories Class Library
tests the Sender field of the message to ensure that a received mes-
sage came from the PAC, the performative is “forward”, and the 
content is a PriceQuote object. This rule then stores the message 
temporarily into the agent's mental model and initializes a Purchase 
object to represent the current situation.  Another rule will forward 
this newly-received message on to the store agents. Figure 49 
shows the rule which handles messages sent by the control panel. 

(11) Write rules to generate output to the control panel.  

Sometimes output to the control panel will be triggered by mes-
sages received from other agents or by combinations of values in 
the mental model of the agent.  Private actions can be used to dis-
play output to the user in response to events or situations detected 
by the agent. Figure 50 shows the BuyerFrame interface after a mes-
sage has been received from the control panel and forwarded to the 
store agent.

Figure 51 shows the rule which handles messages from store 
agents. This rule will be activated by a message containing a com-
pleted PriceQuote object.  The user will be notified that the mes-

WHEN
1. ( %message.sender EQUALS pacName )
2. ( %message.performative EQUALS "forward" )
3. ( %message.contentType EQUALS PriceQuote )
IF
THEN
1. ASSERT( "currentMessage" %message )
2. ASSERT( "currentPriceQuote" %message.content )
3. ASSERT( Purchase(%message.content.productName,%message.content.quantity,
                     %message.content.unitName, "New Request From User" ) )

Figure 49. Receive Message from Control Panel Rule
1 – 248



Chapter 1: Project Accessories Class Library
sage has been received and the contents of the PriceQuote will be 
displayed.    

Figure 52 shows the BuyerFrame interface after a PriceQuote mes-
sage has been received from one of the store agents. 

Figure 50. BuyerFrame PAC
1 – 249



Chapter 1: Project Accessories Class Library
WHEN: 
1. ( %message.sender  EQUALS ?agent.agentInfo.name ) 
2. ( %message.performative  EQUALS "tell" ) 
3. ( %message.contentType  EQUALS PriceQuote ) 
4. ( %message.content.productName  EQUALS ?product.productName ) 
IF: 
1. ( BIND buyerFrame ) 
2. ( ?product.status EQUALS "Requested Bids" ) 
THEN: 
1. DO buyerFrame.displayMessage( Concat( "Received price quote from 
", 

%message.sender ) ) 
2. DO buyerFrame.displayPriceQuote( %message.content ) 
3. ASSERT( %message.content ) 

Figure 51. Receive Message from Store Agent Rule

Figure 52. BuyerFrame PAC
1 – 250



C h a p t e r 2

Run-Time System

Chapter Overview

You can find the following information 
in this chapter:

• Starting the Agent Engine
• Engine Options
• Engine Launcher
• Engine Console
• Built-In Actions
• Agent Engine Cycle
• Engine Threads
2 – 251



Chapter 2: Run-Time System
A. Run-Time System

Run-Time Agent Engine
The Run-Time System consists of the Agent Program and the run-
time agent engine. The Agent Program is a combination of the 
agent definition in the RADL file and the Project Accessories 
Library (PAL). The Agent Program is executed by the run-time 
agent engine; the combination of the Agent Program and the agent 
engine produces an executable agent.

At start-up, the Run-Time System initializes the agent engine using 
information stored in the RADL file and links the required compo-
nents from the Project Accessories Library. Both the agent defini-
tion and the project accessory classes (PACs) are needed: the agent 
definition supplies the agent with a reasoning capability and an ini-
tial mental model; the PACs are the objects used to represent the 
problem domain and provide the agent the ability to interact with its 
environment.

The Run-Time System allows an agent to be created in the develop-
ment environment and then be deployed as a stand-alone entity exe-
cuting in the run-time environment. It is the agent executing in the 
Run-Time System that performs useful work. The Run-Time Sys-
tem is distinct from the AgentBuilder Toolkit. After the agent 
development process is completed, an agent can be executed on any 
platform with a Java Virtual Machine (version 1.1 or later). The 
Run-Time System does not require access to the Java Development 
Environment.

The agent engine is a proprietary inferencing engine implemented 
in Java. This engine utilizes an efficient and robust inferencing pro-
cedure to match the agent's behavioral rules with the agent's beliefs 
and incoming messages. The agent engine performs the reasoning 
2 – 252



Chapter 2: Run-Time System
defined in the RADL file and executes the specified actions. The 
available actions are the built-in actions provided by the Run-Time 
System and the actions based on methods from project accessory 
classes.  The agent engine monitors the execution of the actions and 
returns execution results to the agent.

Starting the Agent Engine
There are several ways to launch the agent engine and begin exe-
cuting an agent program.  The Agent Engine Options dialog can be 
started from the agent tool.  The Agent Engine Options dialog can 
also be started from a shell script, or the agent engine can be started 
directly from a command line by invoking the engine shell script.

Agent Engine Options
The Agent Engine Options dialog provides a graphical interface for 
specifying agent engine options.  Listed below are the options that 
can be specified.  As the options are specified they are displayed in 
the text area at the bottom of the dialog. Figure 53 shows the inter-
face.

Figure 53. Agent Engine Options
2 – 253



Chapter 2: Run-Time System
RADL File
The RADL file can be specified by clicking on the Add RADL 
File... button. This will bring up the File dialog in which you can 
select the RADL file. Multiple RADL files can be specified to run 
in the same Java Virtual Machine by continuing to click on the Add 
Radl File... button. To remove a RADL file from the list, select the 
RADL file name and then click on the Remove RADL File button. 
Figure 54 shows the Agent Engine Options panel with a RADL file 
specified.

Classpath 
The CLASSPATH is displayed in a list. It is initialized with the 
CLASSPATH which was set at the time the Agent Engine 
Options dialog was opened. You can modify the classpath by using 
the buttons located below the classpath list. The Add File button 

Figure 54. Agent Engine Options 
2 – 254



Chapter 2: Run-Time System
will display the File dialog, which will allow you to select either a 
jar or zip file. The Add Directory button will display the Directory 
dialog which only allows you to select directories. The Remove 
button will remove the current selection under the classpath list. 
The Move Up and Move Down buttons allow you to specify the 
order the classpath is read. When the Agent Engine is launched, a 
new Java Virtual Machine will be instantiated using the specified 
classpath. Note: The classpath field is not editable when the Agent 
Engine Options dialog is started from the console because the 
agent will run in the existing Java Virtual Machine and must use the 
existing classpath.

Verbose Options
The Verbose Options choice box contains the following items:   
Messages, Changed Beliefs, All Beliefs, Fired Rules, Every-
thing, Trace File… and Clear Verbose Options

Almost any combination of the first five options may be selected.  
The Changed Beliefs and All Beliefs options are mutually exclu-
sive, so selecting one of them will cause the other to be de-selected. 
Selecting the Everything option will replace any other options that 
have been selected.  Verbose output will be sent to the output 
stream used for regular program output (e.g., console or screen) as 
well as to any trace files that have been specified by the user. Figure 
55 shows the Agent Engine Options panel with several verbose 
options specified.

Shown below are examples of the run-time output for each of the 
verbose options. These were taken from the BuyerSeller example 
application.  This output will appear in the console or on the screen 
at run-time and not in the Agent Engine Options dialog. These 
examples are included here to show the effects of the options 
selected in the Agent Engine Options dialog.
2 – 255



Chapter 2: Run-Time System
The Verbose Messages option will cause the engine to print all 
incoming messages received by the agent during each cycle.  All 
non-empty KQML fields in messages are printed; the content 
object is printed via the toString method.  Figure 56 shows verbose 
output after the buyer agent has received a message from the Store 
2 agent and the message contains a price quote.

The Changed Beliefs option will cause the engine to print the 
beliefs which changed during the cycle.  Below is an example of the 
verbose output taken from the BuyerSeller application.  Figure 57 
shows the changes in the buyer agent's mental model due to a pur-
chase of 2 gallons of milk: the amount the buyer believes is in the 
account has decreased, and the quantity of milk the buyer believes 
is in his inventory has increased.

Figure 55. Agent Engine Options
2 – 256



Chapter 2: Run-Time System
The All Beliefs option will cause the engine to print all beliefs in 
the agent's mental model at end of cycle.  New beliefs or beliefs 
which changed during the cycle are marked with a *.  Figure 58 is 
an example of the verbose output taken from the Buyer-Seller 
application at the same cycle used in the previous example.  The 
inventory record for milk and the account balance are marked as 
new beliefs because they changed during the cycle.  The current-
Time belief is also marked as a new belief; it's an instance of the 
built-in Time class which is automatically updated every cycle by 
the agent engine.

 INBOUND MESSAGES
sender:       "Store 2"   
receiver:     "Buyer"   
performative: "tell"   
replyWith:    "Price quote"   
inReplyTo:    "Price quote"   
contentType:  com.reticular.agents.buyerSeller.PriceQuote 
content:      "{Product Name = Milk, Quantity = 2 gallon, Price = 2.24,            

Store Name = Store 2}"

Figure 56. Run-Time Output (Verbose Option)

CHANGED BELIEFS   
Changed: Float<accountBalance> 50.0 To: 45.52   
Changed: InventoryRecord<> Name = Milk, Quantity = 0 gallon To: 

Name = Milk,            Quantity = 2 gallon   
Retracted: Purchase<> {Product Name = Milk, Quantity = 2 gallon, 

Unit   Price = 0.0, Total Price = 4.48, 
Status = Accepted quote}

Figure 57. Run-Time Output (Changed Beliefs)
2 – 257



Chapter 2: Run-Time System
The Fired Rules option will cause the engine to print the names of 
the rules which fired in the cycle.  As you can see in this example, 
rules may fire more than once per cycle.  Here the “Cleanup old 
quotes” rule fired twice; once per each old price quote that was 
found in the mental model. 

  FIRED RULES: Cleanup old quotes, Cleanup old quotes, Receive 
purchase confirmation, Update account

Selecting the Trace File item will display a File Dialog and a trace 
file can be selected.  Verbose output will also be printed to what-
ever output stream is being used for program output.  A trace file, if 

BELIEFS   
* InventoryRecord<> Name = Milk, Quantity = 2 gallon     

InventoryRecord<> Name = Bread, Quantity = 0 loaf     
InventoryRecord<> Name = Bananas, Quantity = 0 lb.     
Agent<SELF> Agent Name: Buyer Address: quincy.reticular.com     
Agent<Store 1> Agent Name: Store 1 Address: harding.reticular.com
Agent<Store 2> Agent Name: Store 2 Address: harding.reticular.com 
String<selfName> Buyer     
String<pacName> Buyer:ControlPanel     
Boolean<controlPanelIsReady> true     
BuyerFrame<buyerFrame> 

com.reticular.agents.buyerSeller.BuyerFrame[frame0,        0,-
3,549x379,layout=java.awt.GridBagLayout,resizable,title=Bu
er agent on quincy.reticular.com]   

* Float<accountBalance> 45.52   
* Time<currentTime> Thu Apr 23 11:45:02 PDT 1998     

Time<startupTime> Thu Apr 23 11:44:36 PDT 1998

Figure 58. Agent’s Beliefs at End of Cycle
2 – 258



Chapter 2: Run-Time System
one is specified, will contain only the verbose output from a pro-
gram.

Selecting the Clear Verbose Options item will clear any verbose 
options that were previously specified.  Figure 59 shows the Agent 
Engine Options dialog after the verbose options have been cleared.

Program Output

The Program Output choice box contains the following items: 
Output File..., No Console, No System.out, and Clear Output 
Options

Program output is all the output generated from the agent engine or 
from the built-in action SystemOutPrintln, and all output generated 

Figure 59. Agent Engine Options
2 – 259



Chapter 2: Run-Time System
by calls to System.out.println in PAC code. Figure 60 shows the 
Agent Engine Options dialog with an output option specified.

Selecting the Output File item will display a File Dialog and an 
output file can be selected.  Specifying an output file will not affect 
the standard screen or console output; all output will automatically 
be printed to the screen or console and the output file(s).  Any num-
ber of output files can be used. Note that there may be a noticeable 
slowdown in the agent engine when printing large volumes of data 
to output files.

Selecting the No Console option will cause the engine to operate 
without the default console.  If you have not also selected the No 
System.out option, program output will be printed to the standard 
output stream for your system and to any output files you've speci-
fied.  If you've selected No Console and No System.out, program 

Figure 60. Agent Engine Options
2 – 260



Chapter 2: Run-Time System
output will be printed only to files you've specified. Selecting No 
System.out without selecting No Console has no effect.

Error Log
The Error Log Options choice box contains the following items: 
Error File…, No System.err, and Clear Error.

Error output is all the error messages generated from the agent 
engine and all output generated by calls to System.err.println in 
PAC code.  Figure 61 shows the Agent Engine Options dialog with 
an error log option specified.

Selecting the Error File item will display a File Dialog in which an 
error log file can be selected.  Specifying an error log file will not 
affect the standard screen or console error display; all error mes-

Figure 61. Agent Engine Options
2 – 261



Chapter 2: Run-Time System
sages will automatically be printed to the screen or console and the 
error log file(s).  Any number of error log files can be used.

The No System.err option is similar to the No System.out option: 
it only has an effect if No Console is also specified.  If you've 
selected No Console and No System.err, error messages will be 
printed only to any error log files you've specified.  Selecting No 
System.err without selecting No Console has no effect.

Starting the Agent Engine from a Command Line 
Figure 62 shows the options available when starting the agent 
engine via the shell script.  (This is the output that is displayed 
when invoking the shell script with the help option, i.e., engine -
h.) For more explanation, please see the descriptions of the options 
in “Agent Engine Options” on page 253.

Java options
The options that can be specified for the Java Virtual Machine are 
listed in Table 1. For a complete description of these options please 
see the Java documentation.  Numerical option arguments, such as 
-ss or -mx, should be given with a space between the option name 
and the number, e.g., -ss 1024.

Table 1.  AgentEngine Command Line Options

Option Use

-verbosegc Causes the garbage collector to print out 
messages whenever it frees memory. 

-noasyncgc Turns off asynchronous garbage collection.

-noclassgc Turns off garbage collection of Java classes. 

-verify Performs byte-code verification on the class 
file.
2 – 262



Chapter 2: Run-Time System
Agent Engine Console 
The agent engine console provides a standard way to view program 
output and error messages, as well as control some aspects of agent 
execution.  For some agent applications the standard console will 
be sufficient for monitoring agent execution; for other applications 
specialized display panels will be needed.  The console can be 
turned off by specifying the -no-console option on the command 

-verifyremote Runs the verifier on all code that is loaded 
into the system via a class loader. 

-noverify Turns verification off.

-ss<number> Sets the maximum stack size that can be used 
by C code in a thread.

-oss <number> Sets the maximum stack size that can be used 
by Java code in a thread.

-ms <number> Sets the start-up size of the memory allocation 
pool.

-mx <number> Sets the maximum size of the memory 
allocation pool.

-prof Starts the Java Runtime with Java profiling 
enabled.

-checksource Compares the modification time of the class 
byte code file to the modification time of the 
class source file, and automatically 
recompiles and reloads if needed.

-cs Same as -checksource.

-classpath <path-list> Specifies the path java uses to look up classes.

Table 1.  AgentEngine Command Line Options

Option Use
2 – 263



Chapter 2: Run-Time System
Usage: /common/agentBuilder/bin/engine <RADL filename> [<options>*] 
Example: /common/agentBuilder/bin/engine test2.radl -vc -o 
test2results.txt
Options:   

-h  or  -help
-i  or  -interface
-v<level> [trace=<filename(s)>]  or  
-verbose <level> [trace=<filename(s)>]       

m  print inbound messages       
c  print changed beliefs each cycle       
b  print all beliefs each cycle       
r  print fired rule names       
e  print everything each cycle       
Note: -v and -verbose are equivalent to -ve       
Examples: -v, -vm, -vmbra, -verbose r                 

-vcr trace=myFile.txt,otherFile.txt

-o <filename(s)>  or  -output <filename(s)>       
Example: -o myFile.txt   -o file1.txt,file2.txt

-e <filename(s)>  or  -error <filename(s)>       
Example: -e myErrorFile.txt

-no-console     Don't use the console, write to the screen.
-no-system-out  Suppress printing of System.out to the screen.
-no-system-err  Suppress printing of System.err to the screen.
-d<parameter>=<value> or -define <parameter>=<value>       

Example: -dCycleTime=4

Java options: The following options can be specified for the Java   
virtual machine.  For a description of these options please see   
the Java documentation.  Numerical option arguments, such as for   
-ss or -mx, should be given with a space between the option name   
and the number, e.g., -ss 1024.

  -verbosegc, -noasyncgc, -noclassgc, -verify, -verifyremote, -
noverify,   -ss <number>, -oss <number>, -ms <number>, -mx 
<number>,   -prof, -cs  or  -checksource

-classpath <path-list>       Use the specified classpath.       
Example: -classpath .:../..:/myPath/myPackage

Figure 62. Agent Engine Command Line Options
2 – 264



Chapter 2: Run-Time System
line or in the Agent Engine Options Program Output choice box.  If 
the console is not used, all program output and error messages will 
go to the standard output and error streams (e.g., the screen) and to 
any files specified by the user.  Figure 63 shows the console.

Figure 63. Engine Console
2 – 265



Chapter 2: Run-Time System
When the console is used it will capture all program output and 
error messages.  The agent engine redirects system output and sys-
tem errors to the console (and any other files that the user speci-
fies), so all calls to System.out.println or System.err.println in 
PAC code will be sent to the appropriate console text area.  Also, 
any output generated from the built-in action SystemOutPrintln or 
other output or error messages from the agent engine will be sent to 
the console. Capturing PAC output using the console should be 
acceptable in most situations.  However, if you're using the console 
and need to print some PAC output to the screen instead of the con-
sole, code such as the following can be used:
PrintWriter standardOutput = 
new PrintWriter(new FileWriter(FileDescriptor.out),
true);

standardOutput.println("yada yada yada"); 

This will print to the standard output stream on your system, NOT 
to the console.  Similarly, building a PrintWriter from FileDe-
scriptor.err will allow you to print to the standard error stream 
on your system.  Of course the name of the PrintWriter object 
(here, “standardOutput”) can be any name you choose.  The second 
argument in the constructor, “true”, tells the system to flush the 
output buffer automatically after every println statement; use this 
value if you want output to appear immediately after it's printed.  
To use this code your PAC will need the import statement import 
java.io.*; (or you could import each of the classes separately or 
use the full package.class names such as java.io.PrintWriter).

The main purpose of the console is to display program output.  The 
console features a scrollable text area and three buttons that affect 
the output display: Save, Clear, and Freeze.  Clicking on the Save 
button will cause a File Dialog to appear; all the output currently in 
the output text area (including any text that has scrolled out of 
view) will be saved into the selected file.  Clicking on the Clear 
2 – 266



Chapter 2: Run-Time System
button will clear the output text area.  Clicking on the Freeze but-
ton will change the button label to Resume and will freeze the out-
put but will NOT halt the agent engine.  The engine will continue 
executing normally and all output will be stored in the console until 
the Resume button is clicked, then all the stored output will be 
written to the output text area.  The Freeze button is provided to 
make it easier to view a running agent without distraction from fre-
quent updates in the output text area. Figure 64 shows the Save Out-
put File dialog used to select a file for the console's program output.

The console has a scrollable error text area located below the output 
text area. This area includes two buttons—Save and Clear—that 
affect the error display. These buttons have the same effect as the 
buttons for the output text area, except that they save or clear the 
error text area.  There is no Freeze button for the error display 
since error messages will be infrequent and freezing the display is 
unnecessary.

The File menu in the console offers the following items and their 
keyboard shortcuts: Load RADL File…,Close Console, Exit Run-

Figure 64. Save File Dialog
2 – 267



Chapter 2: Run-Time System
Time System. The control key equivalents for each of these File 
menu selections are shown in Table 2.

Selecting the Load RADL File… item will cause a File Dialog to be 
displayed.  If a file is selected, the current agent engine will be 
destroyed and a new agent engine will be started using the newly 
selected RADL file and whatever options were used in the previous 
agent engine.

Selecting the Close Console item will close the console but leaves 
the agent engine running.  Output and error messages from the 
agent engine and PACs will continue to be printed to files if any 
files were specified by the user. 

Selecting the Exit Run-Time System item will terminate the agent 
engine and close the console.  

The Edit menu in the console provides the following commands: 
Cut, Copy, and Paste. The keyboard shortcuts for these menu 
items are shown in Table 3.

Table 2.  File Menu Keyboard Equivalents

Menu Item Key

Load RADL File… Ctrl + L

Close Console Ctrl + H

Exit Run-Time System Ctrl + E

Table 3.  Edit Menu Keyboard Equivalents

Menu Item Key

Cut Ctrl + X

Copy Ctrl + C
2 – 268



Chapter 2: Run-Time System
All Edit options are applied to a highlighted block of text in either 
the output or error text areas. (Currently not functional)

The Exec menu provides the following commands: Set Engine 
Options…, Restart Engine, Terminate Engine. The control key 
equivalents for each of these Exec menu selections are shown in 
Table 4.

Selecting the Set Engine Options… item will cause the Agent 
Engine Options dialog to be displayed.  This allows the user to 
select a new RADL file and/or new options for the agent engine.  If 
the user clicks the OK button the current agent engine will be 
destroyed and a new agent engine will be started using the RADL 
file and options specified in the Agent Engine Options panel.

Selecting the Restart Engine item will destroy the current agent 
engine and start a new agent engine using the current RADL file 
and options. Any PAC control panels subclassed from 

Paste Ctrl + P

Table 4.  File Menu Keyboard Equivalents

Menu Item Key

Set Engine Options… Ctrl + O

Restart Engine Ctrl + R

Terminate Engine Ctrl + T

Table 3.  Edit Menu Keyboard Equivalents

Menu Item Key
2 – 269



Chapter 2: Run-Time System
java.awt.Window or its subclasses (e.g., java.awt.Frame, 
java.awt.Dialog) will be destroyed.

Selecting the Terminate Engine item will destroy the current agent 
engine.  Any PAC control panels subclassed from java.awt.Window 
or its subclasses (e.g., java.awt.Frame, java.awt.Dialog) will be 
destroyed. Terminating the agent engine will not close the console.

MultiAgent Engine Console
When more than one agent is running in the same Java Virtual 
Machine, the MultiAgent console will be used, see Figure 65. In 
addition to the regular Agent Engine Console you get for each 
agent running, you will also see a MultiAgent Engine Console. The 
MultiAgent Engine Console has a similar interface to the Agent 
Engine Console, but behaves differently. The output you see on the 
output text area of the MultiAgent Engine Console includes the 
RADL files and options used to start the engines for the agents. 
Also, if any output/error messages cannot be redirected to the 
proper Agent Engine Console, it will be displayed on the Multi-
Agent Engine Console.

The console provides a scrollable text area and two buttons that 
affect the ouput display: Save and Clear. These buttons perform 
the same functions as the Save and Clear buttons for the Agent 
Engine Console. The Save button saves the output to a file, and the 
Clear button clears the output text area. The second scrollable text 
area is for error output. This area also includes two buttons: Save 
and Clear. These buttons have the same effect as the buttons for the 
output text area, except that they save and clear the error text area.

The File menu in the console offers the following items: Close and 
Exit. The Close button will close the MultiAgent Engine display 
and leave running any agent engines that are currently executing. If 
the MultiAgent Engine Console is the only window open, this will 
2 – 270



Chapter 2: Run-Time System
exit the virtual machine. If the Exit menu item is selected, the con-
sole will terminate all agent engines and exit the virtual machine.

The Exec menu provides commands to Restart All Engines and 
Terminate All Engines. Selecting Restart All Engines will termi-
nate all agent engines running in this Java Virtual Machine and 
restart them using the current RADL file and options. Selecting the 
Terminate All Engines menu item will terminate all agent engines 
running in this Java Virtual Machine. 

Figure 65. Multi-Agent Engine Console
2 – 271



Chapter 2: Run-Time System
Built-in Actions
The agent engine provides a suite of built-in actions which can be 
called from rules.  This section describes the actions and the 
required arguments.
ConnectAction
void ConnectAction( String actionName, Object pacObject )

RADL example:
(DO ConnectAction( [VAL String "action1"], [INST MyPac<pac1>] ))

ConnectAction provides a way to connect a named action to its 
underlying PAC object.  This is not required in AgentBuilder 1.1 
and later and exists only for compatibility with older RADL code.
GetCycleTime
Float GetCycleTime()

RADL example: 
(DO [RVAR Float<currentCycleTime>] = GetCycleTime())

GetCycleTime returns the current value for the agent engine cycle 
length, in seconds.  The Float value returned by the action can be 
stored into a variable and then asserted into the agent's mental 
model or used elsewhere on the RHS of the enclosing rule.

GetHostAddress
String GetHostAddress())

RADL example:
(DO [RVAR String<hostAddress>] = GetHostAddress())

GetHostAddress returns the IP address (as a String, e.g., 
“199.106.0.42”) of the physical machine on which the agent engine 
is running. The String value returned by the action can be stored 
into a variable and then asserted into the agent's mental model or 
used elsewhere on the RHS of the enclosing rule.
2 – 272



Chapter 2: Run-Time System
GetHostName
String GetHostName())

RADL example: 
(DO [RVAR String<hostName>] = GetHostName())

GetHostName returns the host name of the physical machine on 
which the agent engine is running.  The String value returned by 
the action can be stored into a variable and then asserted into the 
agent's mental model or used elsewhere on the RHS of the enclos-
ing rule.
GetSystemProperty
String GetSystemProperty( String keyString )

RADL example: 
(DO [RVAR String<cwd>] = GetSystemProperty( [VAL String "user.dir"] ))

GetSystemProperty provides access to the standard system proper-
ties that are available to any Java program.  GetSystemProperty is 
implemented via the standard System.getProperty(String) 
method and uses the same key strings, e.g., “user.dir”.  The 
String value returned by the action can be stored into a variable 
and then asserted into the agent's mental model or used elsewhere 
on the RHS of the enclosing rule.
OpenConsole
void OpenConsole()

RADL example: 
(DO OpenConsole())

The OpenConsole built-in action is intended for use in environ-
ments where the engine is running without a console and a situation 
is detected which should be brought to the attention of the user.  If 
there is no console at the time OpenConsole is invoked it will open a 
2 – 273



Chapter 2: Run-Time System
console and begin printing program output and error messages to 
the console (in addition to any output or error log files that may be 
open).  If OpenConsole is invoked when a console is already open 
then the action will have no effect.
OpenInputDialog
void OpenInputDialog( String dialogName, 

String promptString, Class expectedType )

RADL example: 
(DO OpenInputDialog( [VAL String "Price Dialog"] 

[VAL String "Enter the maximum acceptable price"] 
[VAL Class Float] ))

The OpenInputDialog built-in action provides easy access to the 
InputDialog built-in PAC.  Although it is possible to build and use 
the InputDialog directly, this built-in action simplifies the con-
struction.  The InputDialog can be used to obtain input of class 
String, Character, Boolean, or any of the numerical classes (e.g., 
Integer).  For each dialog the user must provide a reference to the 
agent's AgentInfo object, a name for the input dialog, a prompt 
string, and the expected type (as a java.lang.Class object).  The 
dialog will only accept input that can be converted to the specified 
type, so for example an InputDialog that expects a Float input will 
not accept an input string containing non-numeric characters.  Any 
range checking or further testing of the input must be done by the 
agent.  Figure 66 shows the InputDialog built by the OpenInputDi-
alog action shown above.

In the example shown above the dialog will be named Price Dialog, 
the prompt string will be Enter the maximum acceptable 
price, and the dialog will only accept a Float input.  The InputDi-
alog will be a modal dialog which will be displayed until the user 
types a valid input and hits the Enter key on the keyboard or clicks 
on the OK button or the Cancel button.  If the input cannot be con-
2 – 274



Chapter 2: Run-Time System
verted into the specified type an error dialog will be displayed.  Fig-
ure 67 shows the error dialog for this example.

If the user enters a valid input, the input object (in this case a Float 
object) will be sent to the agent as the content of a KQML message 
with the performative “tell”.  The following patterns could be used 
in a rule to detect a message from the InputDialog built in the 
OpenInputDialog example above:

(OBJ [VAR KqmlMessage<%m>.Sender] EQUALS [VAL String “Price 
Dialog”])   (OBJ [VAR KqmlMessage<%m>.Performative] EQUALS [VAL 
String “tell”])   (OBJ [VAR KqmlMessage<%m>.ContentType] EQUALS 
[VAL Class Float])

If a KQML message satisfies these patterns then the message will 
be accepted as an input message from the InputDialog and the 

Figure 66. Built-In Input Dialog

Figure 67. Error Dialog
2 – 275



Chapter 2: Run-Time System
value can be extracted from the content object and stored into the 
agent's mental model. 
OpenOutputDialog
void OpenOutputDialog( String outputString )

RADL example: 
(DO OpenOutputDialog( [VAL String "The answer is 42."] )

OpenOutputDialog creates a simple output dialog with a text area 
and displays the given output string in the text area.
RegisterAgent
void RegisterAgent( AgentInfo otherAgentInfo )

RADL example: 
(DO RegisterAgent( [VAR AgentInfo<?info>] ))

The RegisterAgent built-in action is used to register a new agent 
with the communication system.
RemoveRule
void RemoveRule( String ruleName )

RADL example: 
(DO RemoveRule( [VAL String "Rule 1"] ))

RemoveRule removes the specified rule from the agent's rule base.

SendKqmlMessage
void SendKqmlMessage( KqmlMessage outputMessage, 

String receiverName,         
String performative, 
Object content, 
String replyWith,         
String inReplyTo, 
String language, 
String ontology,         
String protocol, 
2 – 276



Chapter 2: Run-Time System
String toAgentName, 
String fromAgentName )

RADL example: 
(DO SendKqmlMessage( [NEW KqmlMessage],     

RECEIVER[ VAR Store<?s>.Name ], 
PERFORMATIVE[ VAL String "achieve" ],  
CONTENT[ VAR Purchase<?p> ],    
REPLY_WITH[ VAL String "Purchase Confirmation" ], 
[], [], [], [], [], [] ))

SendKqmlMessage fills in the fields of the outboundMessage argu-
ment with any values specified in the remainder of the argument list 
then queues the message for sending at the end of the cycle.  This 
action will not modify the fields in the outbound message if the cor-
responding argument is unspecified.  For example, if the content 
argument is not specified, the content field in the outbound message 
will not be changed.  This allows for easy re-use of message objects 
without requiring a complete rebuilding of the message.  The out-
boundMessage argument may be a reference to a new or existing 
KQML message object. 

In the example shown (from buyer.radl) a new KQML message 
object is used as the first argument.  The message will be initialized 
with the agent's name as the sender, a store's name as the receiver, 
the performative “achieve” and “Purchase confirmation” as the 
string with which to reply.  These values are determined by a com-
munications protocol developed when the system was designed; the 
buyer agent and the seller agents have rules that were written 
according to this protocol.  For the fourth argument a variable of 
type Purchase will be installed as the content object in the outbound 
message.  The other fields (inReplyTo, language, ontology, proto-
col, toAgentName, and fromAgentName) will be left as-is in the out-
bound message, which in this case means they will be null.
2 – 277



Chapter 2: Run-Time System
SetCycleTime
void SetCycleTime( float cycleTimeInSeconds )

RADL example: 
(DO SetCycleTime( [VAL Float 3.0] ))

SetCycleTime changes the length of the agent engine cycle to the 
specified value.  The input value must be given in seconds.
Sleep
void Sleep( int numberOfSeconds )

RADL example: 
(DO Sleep( [VAL Integer 30] ))

The Sleep built-in action will put the agent to sleep for a specified 
amount of time, starting at the end of the cycle in which the action 
is invoked.  The agent engine will monitor its incoming message 
queue and wake the agent when a message has been received, even 
if the specified sleep time has not elapsed.  If no messages are 
received, the engine will wake the agent when the specified sleep 
time has elapsed.
SleepUntilMessage
void SleepUntilMessage()

RADL example: 
(DO SleepUntilMessage())

The SleepUntilMessage built-in action will put the agent to sleep 
for an unspecified amount of time, starting at the end of the cycle in 
which the action is invoked.  The agent engine will monitor its 
incoming message queue and wake the agent when a message has 
been received.
SleepWhenIdle
void SleepWhenIdle()
2 – 278



Chapter 2: Run-Time System
RADL example: 
(DO SleepWhenIdle())

The SleepWhenIdle built-in action will put the agent to sleep for an 
unspecified amount of time, starting at the end of the next cycle in 
which no rules are fired.  The sleep may start as soon as the next 
cycle following the cycle in which SleepWhenIdle was invoked, or 
the start of the sleep may be delayed indefinitely. The agent engine 
will monitor its incoming message queue and wake the agent when 
a message has been received.

This action is useful in situations where the agent must complete 
some processing, possibly over several cycles, before going to 
sleep.
SystemOutPrintln
void SystemOutPrintln()

RADL example: 
(DO SystemOutPrintln( [VAL String "yada yada yada"] ))

SystemOutPrintln provides a mechanism for printing output from 
within a rule. Note that the argument must be a string.  Printing any 
other data type requires that it be converted into a string before Sys-
temOutPrintln is invoked. 

Kqml Message Failure Handling
There are several reasons why a KQML message might not be 
delivered. We'll explain some of these and provide a method for 
detecting and handling them.

The first reason that a message might fail to be delivered is that the 
sending agent doesn't have communication information about the 
receiving agent; i.e., the receiving agent is not registered with the 
sending agent. When this occurs, an error message will be printed 
2 – 279



Chapter 2: Run-Time System
and the KQML message will be asserted into the agent's mental 
state. The following error message results from attempting to send a 
message to an agent that is not registered with the sending agent.

ERROR Unknown receiver agent "TestAgent"

If the communication information is unknown, there are two alter-
native methods for adding the agent communication information. 
The easiest solution is to include all of the agents (that need to com-
municate) in the same agency. The second solution is to construct 
an AgentInfo object containing the receiving agent's communica-
tion information and use the built-in action, RegisterAgent, to reg-
ister the receiving agent with the sending agent. 

A message might also fail to be delivered if the receiving agent is 
not currently executing (i.e. the agent is off-line). This kind of event 
generates a warning message and, like the previous failure, the 
KQML message is asserted into the agent's mental state. The fol-
lowing warning message is generated when sending a message to 
an agent that is off-line. 
WARNING: Unable to send message to agent "KqmlMessageAgent"

In either case described above, the user is responsible for handling 
these types of message failures. Whenever a message fails to be 
delivered a flag in the KQML message is set. This flag can be 
obtained by calling the message's getSendError method. The fol-
lowing rule is an example of how to handle message send failures: 

("Receive Undelivered Messages" 
WHEN

IF

( OBJ [ VAR KqmlMessage<%message>]  getSendError ( ) )

THEN

(  DO SystemOutPrintln ( [ SFUNC Concat(  
2 – 280



Chapter 2: Run-Time System
[ VAL String "Unable to Deliver Message To: "  ]  

[ VAR KqmlMessage<%message>.receiver] ) 

                         ] ) )

( RETRACT ( [ VAR KqmlMessage<%message>]  ) )

)

The mental conditions of this rule will be met when a KQML Mes-
sage's getSendError method returns true. When this is the case, the 
engine will execute the RHS elements of this rule. First, it will print 
a message indicating that a KQML message was undelivered. Next, 
it will remove the KQML message from the agent's mental state. 

You need to keep in mind that in most cases, the KQML Message 
send routine will not return in the next cycle of the engine. That is, 
it could take the engine from 2 to 4 engine cycles to determine that 
a KQML message is not deliverable.

Agent Engine Cycle
The agent engine operates on a fixed-time-length cycle.  During 
each cycle the agent engine:

• Matches received messages and the agent's current beliefs 
against the agent's behavioral rules to determine which rules 
should be activated.  

• Executes the actions specified in the activated rules.
• Updates the agent's mental model based on the assertions and 

retractions specified in the activated rules and the values 
returned from the executed actions.

If the engine finishes processing before the time allotted for the 
cycle the engine automatically goes to sleep until the start of the 
next cycle.  Approximately one-half of the engine cycle is intended 
for pattern matching and updating the mental model, and the other 
half is intended for executing actions. 
2 – 281



Chapter 2: Run-Time System
On the other hand, if the engine does not finish processing before 
the end of the allowed time, the cycle simply continues past its 
allowed time.  Currently there is no mechanism in place for warn-
ing the user about over-long processing, but later versions will 
notify the user when the pattern matching or action execution can-
not be completed in the allotted time.  Overrunning the cycle 
boundary is not usually a problem, except that it may shift the start-
ing time of a later cycle and delay the execution of a committed 
action.

Agent Engine Threads
It's expected that separate threads will be used for all long-running 
actions. Any invocation of a run() method will automatically be 
executed on its own thread. All regular actions, i.e., the actions that 
will execute on the common execution thread, are expected to exe-
cute quickly (in comparison to the cycle length).  If long-running 
actions are executed on the regular execution thread they may cause 
a delay of several agent cycles.  

Thread priorities. Currently the agent engine main thread and reg-
ular action execution threads run at priority 4; this value is used 
because it is 1 less than the Java Event-handler thread.  Any sepa-
rately-threaded actions run at priority 3 so that they will not pre-
empt the engine thread.  Currently there is no mechanism that 
allows the agent programmer to change the priorities of the engine 
thread or the action threads. 

Although separately threaded actions will help avoid delays in the 
engine cycle, they must be used with care. It's the responsibility of 
the agent programmer to synchronize any interactions between the 
separately threaded action and the rest of the agent engine.  In par-
ticular, control panel PACs must synchronize access to any data 
structures which are used by methods called from the agent engine 
and also called from event handler code. 
2 – 282



Chapter 2: Run-Time System
For example, assume that some PAC has a print(String) method 
that prints to a text area.  Assume also that the PAC has an event 
handler for a button that prints a message to the same text area 
whenever the user clicks on the button.  If access to the text area is 
not synchronized (via synchronized methods or synchronized 
blocks of code) the output from the agent engine and the output 
from the PAC may be intermixed.  In this example the print method 
could be executing on the engine's execution thread when the user 
clicks the button.  Then the PAC's event handler code would exe-
cute on the event handler thread, interrupting the regular print 
method. Finally, after the event handler code has finished printing 
its message into the text area, the remainder of the original print 
argument would be printed.  This synchronization failure would 
only cause confusing output; in other situations, synchronization 
failures could cause the program to crash or return incorrect results. 
2 – 283



Chapter 2: Run-Time System
2 – 284



   
Part IV. 
Appendices
 – 285



   
 – 286



  
Appendix A.  Intrinsics

Built-in actions:
void ConnectAction( String actionName, 

Object sourceObject) 

Float GetCycleTime()

String GetHostAddress() 

String GetHostName() 

String GetSystemProperty( String keyString ) 

void OpenConsole() 

void OpenInputDialog( AgentInfo selfAgentInfo,   
String dialogName, 
String promptString, 
Class expectedType )

void OpenOutputDialog(String outputString)

void RegisterAgent( Agent newAgent ) 

void RemoveRule( String ruleName) 
RM APP– 287



  
void SendKqmlMessage( KqmlMessage outputMessage, 
String receiverName,
String performative, 
Object content,
String replyWith,
String inReplyTo, 
String language, 
String ontology,
String protocol,
String toAgentName,
String fromAgentName)

void SetCycleTime(Float cycleTime)

void ShutdownEngine() 

void Sleep( int numberOfSeconds ) 

void SleepUntilMessage() 

void SleepWhenIdle()

void SystemOutPrintln( String outputString ) 

Object comparison operators: 
EQUALS 
NOT_EQUALS
Boolean operators:
AND 
OR 
NOT

Binding operator: 
BIND

Quantifiers: 
FOR_ALL 
RM APP– 288



  
EXISTS

Numerical comparison operators:
= 
!= 
< 
<= 
> 
>=

String functions: 
String Concat( String firstString, 

String secondString ) 

String Substring(String originalString, 
int fromIndex, int toIndex) 

String SubstringFrom( String originalString, 
int fromIndex )

Integer Length( String targetString ) 

String Uppercase( String originalString ) 

String Lowercase( String originalString ) 

String Trim( String originalString ) 

Integer IndexOf( String baseString, String substring ) 

Integer IndexOfFrom(String baseString, 
String substring, int fromIndex) 

Integer LastIndexOf(String baseString, 
String substring ) 

Integer LastIndexOfFrom( String baseString, 
String substring, int fromIndex )
RM APP– 289



  
Arithmetic functions:
+ 
- 
* 
/
Arithmetic functions take two Number operands and 
return a Number result. If the actual types of both 
operands are the same then the return type will be the 
same as the operand types.  Otherwise the return type 
will be the larger of the operand types, i.e., 
Long+Integer returns a Long, Float+Integer returns a 
Float, Float+Double returns a Double.

Mathematical functions:
Double Sqrt( Number ) 
Double Log( Number ) 
Double Exp( Number ) 
Double Random() 
Long Round( Number ) 
Long Mod( Long, Long ) 
Number Power( Number, Number ) *See note (1) below 
Number Abs( Number )           *See note (2) below 
Number Max( Number, Number ) 
Number Min( Number, Number ) 
Long Floor( Number ) 
Long Ceiling( Number ) 
Double Sin( Number ) 
Double Cos( Number ) 
Double Tan( Number ) 
Double ArcSin( Number ) 
Double ArcCos( Number ) 
Double ArcTan( Number ) 
RM APP– 290



  
Integer ConvertToInteger( Number ) 
Float ConvertToFloat( Number ) 
String ConvertToString( Number )

Other Functions
Object ConvertTo( Class desiredClass, 

Object existingObject )

(1) The return type for Power, Max, and Min is 
determined by the operand types.  If the types of both 
operands are the same then the return type will be the 
same as the operand types.  Otherwise the return type 
will be the larger of the operand types, i.e., 
Max(Long,Integer) returns a Long, Max(Float,Integer) 
returns a Float, Max(Float,Double) returns a Double.
(2) The return type for Abs is the same as the operand 
type.
RM APP– 291



  
RM APP– 292



  
Appendix  B.  Runtime Agent 
Definition Language

Parentheses, square brackets and angled brackets are to be interpreted as 
literals except for angled brackets surrounding a word, e.g. as in <belief-
templates>.  A line such as <template-type> < <instance-name> > is intended 
to represent a name such as Location<currentLocation>, or in the case where 
the instance is not named, Location<>.
   NULL means that nothing is printed in the agent definition file.
==========================================================================
<agent-definition> ::= <version-number>  <unstructured-comments>
                       <separator-line>  <abbreviated-names>
                       <separator-line>  <initial-objects>
                       <separator-line>  <action-definitions>
                       <separator-line>  <capabilities>
                       <separator-line>  <belief-templates> 
                       <separator-line>  <initial-beliefs>
                       <separator-line>  <initial-agency-beliefs>
                       <separator-line   <intial-commitments>
                       <separator-line   <intial-intentions>
                       <separator-line>  <behavioral-rules>
                       <separator-line> 

<version-statement> ::= RUNTIME AGENT DEFINITION BNF VERSION: <version>

<version> ::= <numeral> {.<numeral>}* <unstructured-comments> ::= <string>*

<separator-line> ::=  =========================
The separator line may be any length, composed of the SEPARATOR_LINE_CHAR.  
The <unstructured-comments> may be anything.    

--------------------------ABBREVIATED NAMES-------------------------
<abbreviated-names> ::= ABBREVIATED NAMES <name-table-entry>*

<name-table-entry> ::= ( <abbreviated-name> <full-pkg-class-name> )
RM APP– 293



  
<abbreviated-name> ::= <string>

<full-pkg-class-name> ::= <string>

--------------------------INITIAL OBJECTS---------------------------
<initial-objects> ::= INITIAL OBJECTS  <initial-object>* 

# Note: the CTOR_ARGS keyword is now optional.

<initial-object> ::= ( <pkg-class-name>
< <instance-name> > {CTOR_ARGS | NULL} <ctor-arg-spec>* )

#Note: You only use quotes on the String when the type of object is String.

<ctor-arg-spec> ::= ( <ctor-arg-type> <ctor-arg-value>* ) |  
( java.lang.String "<string>" ) 

<ctor-arg-type>   ::= <pkg-class-name>

<ctor-arg-value> ::= <string>|<numeral>|<ctor-arg-spec>| DEFAULT | NULL

<string> ::= <alphanumeric>*

<numeral> ::= <digit>*{.<digit>*}

<instance-name> ::= <string> | NULL

<pkg-class-name> ::= <package-name>.<class-name> | <class-name>

<package-name> ::= {<string>.}*<string> <class-name> ::= <string>

---------------------------ACTION DEFINITIONS----------------------
<action-definitions> ::= ACTION DEFINITIONS  <action-definition>* 

<action-definition> ::= ( <action-name> PAC_OBJECT <pkg-class-name> 
< <pac-object-name> > PAC_METHOD <method-name> 
( <method-arg-type>* ) )
| ( <action-name> SEPARATE_THREAD 
PAC_OBJECT <pkg-class-name>< <pac-object-name> > )

<action-name> ::= <string>

<method-name>   ::= <string>

<method-arg-type>   ::= <pkg-class-name>

<pac-object-name> ::= <string> | NULL

---------------------------CAPABILITIES-------------------------------------
<capabilities> ::= CAPABILITIES  <capability>* 

<capability> ::= ( <action-name> ( <pattern-variable>* )  

PRECONDITIONS ( <lhs-pattern>* ) EFFECTS ( <mental-change>* ) )

 ---------------------------BELIEF TEMPLATES-------------------------------
<belief-templates> ::=  BELIEF TEMPLATES  <belief-template>* 
RM APP– 294



  
<belief-template> ::= (<template-type>
FIELDS [{<field-type> <<field-name> >}* ]
CTOR-ARGS [ <arg-type>* ] )

<template-type> ::= <string>

<field-type> ::= <string> 

<arg-type> ::= <string> 

<field-name>  ::= <string>

---------------------------INITIAL BELIEFS---------------------------------
<initial-beliefs> ::= INITIAL BELIEFS  <initial-belief>* 

<initial-belief> ::= ( <template-type> < <instance-name> >  
CTOR-ARGS <ctor-arg-spec>* )

 ---------------------------INITIAL COMMITMENTS------------------------------
<initial-commitments> ::= INITIAL COMMITMENTS  <commitment>* 

<commitment> ::= (<agent-name> [ <time> ] <action-name> ( <bound-element>* ))

<time> ::= <year>:<month>:<day> <hour>:<minute>:<second> |STARTUP | SHUTDOWN 

<year> ::= <numeral> 

<month> ::= <numeral>

<day> ::= <numeral>

<hour> ::= <numeral> 

<minute> ::= <numeral> 

<second> ::= <numeral>
---------------------------BEHAVIORAL RULES--------------------------------
<behavioral-rules> ::= BEHAVIORAL RULES <behavioral-rule>* 

<behavioral-rule> ::= ( <rule-name> WHEN  <when-clause>  
IF  <if-clause>                          
THEN  <then-clause>  )

<rule-name> ::= <quoted-string>

<when-clause> ::= <compound-lhs-pattern>*

<if-clause> ::= <compound-lhs-pattern>*

<then-clause> ::= <action-statement>*
{ <mental-change> | <temp-var-rhs-pattern> }*

=========================== RULE PATTERN SUPPORT 
=============================== 
# This section breaks up the rule "compound-lhs-patterns"  into more specific
# elements which are needed for correct representation.
RM APP– 295



  
 <compound-lhs-pattern> ::= ( <simple-lhs-pattern> ) |   
( <compound-lhs-pattern> AND <compound-lhs-pattern> ) |  
( <compound-lhs-pattern> OR <compound-lhs-pattern> ) |  
( NOT( <compound-lhs-pattern> ) ) | (<quantified-pattern> )

<simple-lhs-pattern> ::= <object-relation> | 
<numerical-relation> | 
<bind-pattern> | 
<message-pattern> | 
<temp-var-lhs-pattern>

# Example of new object relation using predicate method with args: 
# OBJ [INST Time<currentTime>] during( (Time [VAR Time<?t1>]), 
# (Time [VAR Time<?t2>]) ) 
# The comma in the arg list is optional

<object-relation> ::= OBJ <lhs-pattern-element> 
<operator-keyword> 
<lhs-pattern-element>| 
OBJ <lhs-pattern-element> 
<predicate-method-name> ( <arg-element-spec>* )

<arg-element-spec> ::= ( <arg-class-name> <lhs-pattern-element>* ) 

<operator-keyword> ::= EQUALS | NOT EQUALS | ELEMENT-OF | NOT-ELEMENT-OF

 <numerical-relation> ::= NUM <lhs-pattern-element> 
<rel-op-symbol> 
<lhs-pattern-element>

<rel-op-symbol> ::=   =  |  !=  |  <  |  <=  |  >  |  >=

<bind-pattern> ::= BIND <pattern-variable> | BIND <named-instance-var>

<temp-var-lhs-pattern> ::= SET_TEMPORARY <pattern-variable> TO 
<lhs-pattern-element>

<quantified-pattern> ::= <quantifier> <quant-var-list> 
( <compound-lhs-pattern> )

<quantifier> ::= FOR_ALL | EXISTS

<quant-var-list> ::= <top-level-pattern-variable>+

<pattern-element> ::= <lhs-pattern-element> | <rhs-pattern-element>

<lhs-pattern-element> := <pattern-variable> | 
<message-pattern-variable> |
<bound-element> | 
<named-instance-var> | 
<function> 

<rhs-pattern-element> := <lhs-pattern-element> | 
<return-variable> |                          
<new-object-element>

#The second option is a special case for handling KqmlMessage casting. 
#This is because the content field is an object and needs to be cast 
RM APP– 296



  
#to its specific type. 
<pattern-variable> ::= [ VAR <pkg-class-name> 

< <var-name> >{.<field-name>}* ] | 
[VAR ( ( <pkg-class-name> ) KqmlMessage 
< <var-name> >.content ) {.<field-name>}* ]

<message-pattern-variable> ::= [ VAR <pkg-class-name> < <var-name> >
{.<field-name>}* ] | [VAR ( ( <pkg-class-name> )
KqmlMessage < <var-name> >.content ) {.<field-name>}* ]

# The <top-level-pattern-var> is a restricted form of pattern variable 
# which is used as the target variable in <quantified-pattern> and 
# <retraction>

<top-level-pattern-var> ::= [ VAR <pkg-class-name> < <var-name> > ] 

<var-name> ::= <string> 

<field-name> ::= <string>

<bound-element> ::=  [ VAL  <pkg-class-name>  <value> ] |
[ VAL  <pkg-class-name>  <ctor-arg-spec>* ]

<value> ::= "<string>" | <numeral> | NULL

 <named-instance-var> ::= [ INST <pkg-class-name> 
< <instance-name> > {.<field-name>}* ]

# The <top-level-named-instance-var> is a restricted form of named instance 
# variable used as the target variable in <retraction>

<top-level-named-instance-var>::= [INST <pkg-class-name> <<instance-name> >] 

<return-variable> ::= [ RVAR <pkg-class-name> < <var-name> > ]

<new-object-element> ::= [ NEW <pkg-class-name>  <ctor-arg-element-spec>* ]

<ctor-arg-element-spec> ::= ( <ctor-arg-class-name> <rhs-pattern-element>* )         

<function> ::= <math-function> | <arithmetic-function> | <string-function>

<arithmetic-func> ::= [ AFUNC <pattern-element> 
<arithmetic-symbol> 
<pattern-element> ]

<arithmetic-symbol> ::=  +  |  -  |  *  |  /

<math-function> ::= [MFUNC <math-func-keyword> ( <math-func-operand-list> ) ]

<math-func-keyword> ::= Sqrt | Log | Exp | Random | Round | Mod | Power | 
Abs | Max | Min | Floor | Ceiling | Sin | Cos | Tan |  
ArcSin | ArcCos | ArcTan | ConvertToInteger |  
ConvertToFloat

<math-func-operand-list> ::= NULL | <pattern-element> | 
<pattern-element> <pattern-element>

<string-function> ::= [ SFUNC <string-func-keyword> 
RM APP– 297



  
( <string-func-operand-list> ) ]

<string-func-keyword> ::= Concat | Substring | Length | Uppercase |   
Lowercase | Trim | IndexOf | LastIndexOf

<string-func-operand-list> ::= <pattern-element> | 
<pattern-element> <pattern-element> |  
<pattern-element> <pattern-element> <pattern-element>

========================================================================== 
#This section lays out the agent's beliefs about its own agency and 
#all of the other agents it knows about.  It does this in a general 
#intial beliefs manner (i.e. it uses the format for an initial belief) 
#It will look like an initial belief to the agent engine parser. 
#The <comm-info> for the self agent cannot be null.

 <initial-agency-beliefs>    ::= INITIAL AGENCY BELIEFS  
<self-spec> { <agency-tool-spec> | NULL }  
{ <debugger-spec> | NULL } 
{ <remote-agents-spec> | NULL } | NULL

<self-spec>        ::= ( SELF <agent-name>  [ <agent-address> ]  
{ [<comm-info>] }+ [ <keys> ]  [ <agencies> ] ) 

<agency-tool-spec> ::= ( AGENCY_TOOL  <remote-agent> )

<debugger-spec> ::=  ( DEBUGGER  <remote-agent> )

<remote-agents-spec> ::= REMOTE_AGENTS { ( <remote-agent> ) }*

<remote-agent>    ::= <agent-name>  [ <agent-address> ]  
[<comm-info>] [ <keys> ]  [ <agencies> ] 

<agent>           ::= <String>  (quoted string)

<agencies>        ::= <agency> { , <agency> } *  

<agency>          ::= <String>  (quoted string)

<comm-info>       ::= <rmi> | <socket> | NULL

<rmi>             ::= RMI : rmiRegistry-port-number

<socket>          ::= SOCKET  : socket-port-number : full-pkg-class-name

<agent-address>   ::= <IPaddress> | CURRENT_IP_ADDRESS 

<IPAddress>       ::= address  (number or name)

<keys>            ::= <public-key>  <private-key> | NULL

<public-key>      ::= byte[]

<private-key>     ::= byte[]

========================================================================== 
#RHS support
<rhs-pattern> ::= ( <action-statement> ) | 
RM APP– 298



  
( <mental-change> ) |                   
( <temp-var-rhs-pattern> )

 <action-statement> ::= DO <action-name> ( <rhs-pattern-element>
{ , <rhs-pattern-element> }* )| 
DO <return-variable> = <action-name>   
( <rhs-pattern-element> { , <rhs-pattern-element> }* ) | 
DO SendKqmlMessage( <mssg-pattern-element>   
<sender-pattern-element> 
<receiver-pattern-element>    
<performative-pattern-element>    
<reply-with-pattern-element>    
<in-reply-to-pattern-element>  
<to-pattern-element>   
<from-pattern-element>      
<language-pattern-element>  
<ontology-pattern-element>  
<content-pattern-element> )| 
DO <target-element> <method-name>
( <ctor-arg-element-spec>                         
{ , <ctor-arg-element-spec> }* | 
NULL ) # For the "run" method | 
DO <target-element> run ( ) SEPARATE_THREAD | 
DO <return-variable> = <target-element> 

<method-name> ( <ctor-arg-element-spec>   
{ , <ctor-arg-element-spec> }* | NULL ) 

<target-element> ::= <pattern-variable> | <named-instance-var>

<method-name>  ::= <String>

<mssg-pattern-element> ::= <rhs-pattern-element> 

<sender-pattern-element>       ::= SENDER <rhs-pattern-element> | []

<receiver-pattern-element>     ::= RECEIVER <rhs-pattern-element> | []

<performative-pattern-element> ::= PERFORMATIVE <rhs-pattern-element> | []

<reply-with-pattern-element>   ::= REPLY_WITH <rhs-pattern-element> | [] 

<in-reply-to-pattern-element>  ::= IN_REPLY_TO <rhs-pattern-element> | []

<to-pattern-element>           ::= TO <rhs-pattern-element> | [] 

<from-pattern-element>         ::= FROM <rhs-pattern-element> | [] 

<language-pattern-element>     ::= LANGUAGE <rhs-pattern-element> | []

<ontology-pattern-element>     ::= ONTOLOGY <rhs-pattern-element> | []

<content-pattern-element>      ::= CONTENT <rhs-pattern-element> | []

<mental-change> ::= <assertion> | <retraction>

<assertion> ::= ASSERT ( <instance-name> <object-pattern> ) |  
ASSERT ( <replacement> )
RM APP– 299



  
<instance-name> ::= <bound-element> | NULL

<object-pattern> ::= <pattern-variable> | <return-variable> | 
<new-object-element> | <bound-element> | 
<named-instance-var>

<replacement> ::= SET_VALUE_OF <pattern-variable> TO <rhs-pattern-element>| 
SET_VALUE_OF <named-instance-var> TO <rhs-pattern-element>

# A retraction target will be either a <top-level-pattern-variable> or a 
# <top-level-named-instance-var>.  These are restricted forms of pattern
# vars or named instance vars which cannot have any subobjects specified.

<retraction> ::= RETRACT ( <top-level-pattern-variable> ) | 
RETRACT ( <top-level-named-instance-var> )

<temp-var-rhs-pattern> ::= SET_TEMPORARY <pattern-variable> 
TO <rhs-pattern-element>

--------------------------------------------------------------------------
RM APP– 300



  
Appendix C.  Operators and 
Patterns

NOTE: In the following sections describing operators and pattern 
types, some simple examples are used to illustrate the behavior of 
patterns.  Many of these examples show the agent's mental model 
consisting of several Integer and/or String objects, and the agent's 
rules contain patterns that match agains Integers and/or Strings. 
These data types were chosen to make the examples as simple as 
possible.  Although it's possible to use Integer and String objects 
as beliefs in an agent's mental model, most non-trivial agents use 
PAC instances to store their knowledge of the world.  

The discussions in the sections below do not take refraction into 
account.  Refraction is the term used in rule-based systems to 
describe the suppression of a response to repeated stimuli.  This 
term is borrowed from neuroscience, where it refers to a neuron's 
response to repeated stimuli.  In the AgentBuilder run-time system, 
a rule will be activated only if all of its left-hand-side patterns are 
satisfied, and at least one of the patterns matches against a new 
belief.  Rule activation will be suppressed if all patterns match 
against old beliefs. 
RM APP– 301



  
Some examples show rule definitions, which contain the generic 
patterns, and rule activations that result from pattern matching the 
rules against the mental model.  The rule definitions show the vari-
ables in the patterns, e.g., ?i represents a variable of type Integer 
with name ?i, and ?s represents a String variable.  The rule activa-
tions show the values bound to the variables in each activation, with 
the given mental model.  Only the bindings that lead to an activa-
tion of the rule are shown.

BIND
A BIND pattern is the simplest type of pattern. A BIND pattern will 
evaluate to true if there exists a binding for the variable in the pat-
tern.  For example, assume that ?s is a variable of type String. The 
pattern ( BIND ?s ) will evaluate to true, and will bind a value to 
the variable ?s, for every String object in the mental model. Con-
sider the example shown in Figure 68:

This rule, with the given mental model of two new String beliefs, 
will fire twice in the same cycle.  The pattern ( BIND ?s ) will 
evaluate to true twice, and each time it will bind the variable ?s to 
one of the String values in the mental model.  The first time the 

MENTAL MODEL:
String<s1> "foo bar" 
String<s2> "yada yada yada"

RULE: Bind and Print
IF
( BIND ?s ) 
THEN 
DO SystemOutPrintln( ?s )

Figure 68. Bind Example
RM APP– 302



  
rule fires it will print the string foo bar, the second time it will print 
yada yada yada.

Classes and Subclasses
Variables will bind to objects which are of the class defined for the 
variable, or any subclass (or subclass of a subclass, etc.) of the 
defined class.  Consider, for example, a hierarchy of classes that 
represent various shapes in a graphical application.  Assume that 
the Square class is a subclass of the Rectangle class, and the Rect-
angle class defines and implements a method setWidth(int).  The 
Square class implements its own version of setWidth(int).  The 
Square setWidth overrides the Rectangle setWidth and sets both 
the length and the width to the specified value, to maintain square-
ness.

In the example shown below, assume that the ?rectangle variable 
is defined to bind to objects of class Rectangle.  The Set Widths 
rule will fire twice, once with ?rectangle bound to the Square 
instance, once with ?rectangle bound to the Rectangle instance.  
When ?rectangle is bound to the Square s1 the Square method 
setWidth(int) will be used to perform the specified action.  When 
?rectangle is bound to the Rectangle r1 the Rectangle method set-
Width(int) will be used.

MENTAL MODEL: Square<s1> Rectangle<r1>

RULE: Set Widths IF (BIND ?rectangle) THEN DO ?rectan-
gle.setWidth(42)

See the BIND patterns vs. EXISTS patterns section below for an 
explanation of BIND patterns in some unusual contexts.
RM APP– 303



  
EQUALS/NOT_EQUALS 
The EQUALS operator is used to perform an equality comparison 
between two objects of the same class, using the equals method 
defined in the class of the objects. For example, consider a pattern 
that compares a String variable and a String literal: ( ?string 
EQUALS "yada yada yada" ).  When this pattern gets evaluated the 
agent engine will find all possible bindings for the ?string variable 
then invoke the String::equals(String) method on each binding, 
using the String literal yada yada yada as the argument.

 The NOT_EQUALS operator is used to perform an inequality 
comparison between two objects of the same class, using the equals 
method defined in the class of the objects but with a false expected 
value.

NUMERICAL RELATIONS 
The numerical relation symbols =, !=, <, <=, >, and >= can only 
be used between numerical operands.  The numerical operands can 
be any numerical objects or primitive values, and the types of the 
two operands do not need to be the same.  For the following exam-
ples assume that ?i is an Integer variable and ?f is a Float vari-
able.  The following patterns are all correct patterns: (?i = 23), 
(23.4<= ?f), and (?i = ?f).  Note that these example patterns 
would not be used together in the same rule, because they are mutu-
ally exclusive conditions.  The last example shows a comparison 
between an Integer and a Float, which will evaluate to true if both 
objects contain the same value.

It's also possible to compare the values in numerical objects (e.g., 
Integers or Floats) to primitive values extracted from objects in 
the mental state.  For example, assume a PriceQuote PAC has an 
attribute named quantity which is an int value, assume ?price-
Quote is a variable of type PriceQuote, and assume currentQuan-
RM APP– 304



  
tity is a named instance of Integer.  Then ( 
?priceQuote.quantity <= currentQuantity ) is a valid numerical 
pattern, even though it compares an int to an Integer. Numerical 
patterns may contain any mixture of numerical objects or numerical 
primitive values; the values are automatically extracted from the 
objects and used in the comparison.  In numerical relations there's 
no need to invoke methods (intValue(), floatValue(), etc.) to 
extract values from an object before the values are used in a com-
parison.

It's possible to compare numerical objects with the EQUALS or 
NOT_EQUALS operator but the types of both objects must agree.  If ?i 
is an Integer variable and 23 is an Integer value, then the pattern ( 
?i EQUALS 23 ) is a valid pattern which will have the same truth 
value as the numerical relation pattern ( ?i = 23 ).  It's not possi-
ble to mix object types in a pattern with an EQUALS operator, so if 
23.0 is a Float value then a pattern such as ( ?i EQUALS 23.0 ) is 
not a valid pattern.  For comparisons of numerical objects the 
numerical relation patterns (i.e., using = or !=) are recommended.

NOTE: In a LHS pattern the equal sign, =, represents an equality 
comparison between numerical objects or values.  In a LHS pattern 
it does not represent assignment of a value to a variable, as it would 
in a programming language such as C or Java.  The LHS pattern ( 
?i = 23 ) compares the bindings for ?i to the integer value 23.  It 
does not assign a value of 23 to the variable ?i. The pattern binds 
to the value 23 if and only if there is an Integer in the mental model 
with the value 23. 

ARITHMETIC OPERATORS
The arithmetic operators +, -, *, and / require numerical oper-
ands. The types of the operands may differ, as long as both are 
numeric types.  If the types of both operands are the same then the 
RM APP– 305



  
type of the result will be the same as the operand types.  Otherwise 
the result type will automatically be the larger of the operand types. 
For example Long+Integer returns a Long, Float+Integer returns a 
Float, Float+Double returns a Double.  

If the operation is division and both operands are integral types 
(Integer, Short, Long, or Byte, or their primitive counterparts) 
then integer division will be used (e.g., 5 / 2 yields 2).  If the oper-
ation is division and either or both operands are non-integral types 
then floating-point division will be used (e.g., 5.0 / 2 yields 2.5).

AND, OR, NOT 
The boolean operators AND, OR, and NOT can be applied to any pat-
terns. Use of the AND operator is fairly straightforward: an AND pat-
tern is true if and only if both of its subpatterns are true.  The NOT 
operator also behaves as expected: a NOT pattern is true if and only 
if its subpattern is false.  (See the BIND patterns vs. EXISTS patterns 
section below for a description of a pattern where NOT may perform 
differently than expected.)

OR patterns
Rules with OR patterns may fire less often or more often than 
expected and should be used with caution.  The following examples 
illustrate the behavior that can be expected from OR patterns.  

Example 1
The first example shows a mental model consisting only of several 
Integer objects with instance names (e.g., i1) which are not used 
here.  Rule 1 will fire once for each Integer object in the belief 
base which has a value less than 2 and greater than or equal to 4. 
This is an example of an OR pattern which behaves as expected. See 
Figure 69.
RM APP– 306



  
As expected, Rule 1 fires twice because there are two bindings 
which satisfy the pattern ((?i < 2) OR (?i >= 4)).  The two suc-
cessful bindings are shown in the list of rule activations; the unsuc-
cessful bindings (i.e., the bindings to 2 and 3) caused the evaluation 
to fail and so they do not appear in the list of activations.

Example 2
This example shows the unusual behavior that is possible in OR pat-
terns when different variables are used in the clauses.  Given the 
mental model shown below, Rule 2 fires twice even though there is 

MENTAL MODEL:
Integer<i1> 1   
Integer<i2> 2  
Integer<i3> 3   
Integer<i4> 4

RULE: Rule 1 
IF 
( ( ?i < 2 ) OR ( ?i >= 4 ) ) 
THEN 
ASSERT String<> Rule 1 fired

RULE ACTIVATIONS:
RULE: Rule 1
IF ( ( 1 < 2 ) OR ( 1 >= 4 ) ) 
THEN 
ASSERT String<> Rule 1 fired

RULE: Rule 1 
IF
( ( 4 < 2 ) OR ( 4 >= 4 ) ) 
THEN
ASSERT String<> Rule 1 fired

Figure 69. Example Use of OR
RM APP– 307



  
only one Integer that satisfies the first clause of the OR pattern. See 
Figure 70 for an example. 

The reason for the two firings is that there are two sets of bindings 
that satisfy the OR pattern in Rule 2. The pattern is satisfied with ?i 
bound to 2 and ?s bound to abc, and the pattern is satisfied with ?i 
bound to 2 and ?s bound to xyz.

MENTAL MODEL:
Integer<i1> 1   
Integer<i2> 2   
String<s1> "abc"  
String<s2> xyz

RULE: Rule 2 
IF 
( ( ?i = 2 ) OR ( ?s EQUALS yada ) ) 
THEN 
ASSERT String<> Rule 2 fired

 RULE ACTIVATIONS:
RULE: Rule 2 
IF
( ( 2 = 2 ) OR ( "abc" EQUALS yada ) ) 
THEN
ASSERT String<> Rule 2 fired

RULE: Rule 2
IF ( ( 2 = 2 ) OR ( "xyz" EQUALS yada ) ) 
THEN
ASSERT String<> Rule 2 fired

Figure 70. Another Example of OR Usage
RM APP– 308



  
Example 3
This example shows the behavior that is possible in OR patterns 
when the clauses are not mutually exclusive.  Given the mental 
model shown in Figure 71, Rule 3 fires THREE times. 

MENTAL MODEL:
Integer<i1> 1   
Integer<i2> 2  
String<s1> abc   
String<s2> xyz

 RULE: Rule 3 
IF
( ( ?i = 2 ) OR ( ?s EQUALS "abc"  ) 
THEN 
ASSERT String<> Rule 3 fired

 RULE ACTIVATIONS:
RULE: Rule 3
IF
( ( 1 = 2 ) OR ( "abc" EQUALS "abc" ) ) 
THEN
ASSERT String<> Rule 3 fired

RULE: Rule 3
IF
( ( 2 = 2 ) OR ( "abc" EQUALS "abc" ) )
THEN 
ASSERT String<> Rule 3 fired

RULE: Rule 3
IF
( ( 2 = 2 ) OR ( "xyz" EQUALS "abc" ) ) 
THEN 
ASSERT String<> Rule 3 fired

Figure 71. Another Example Use of OR
RM APP– 309



  
The OR pattern gets tested with each possible pair of bindings, i.e., 
with the ordered pairs (1,abc), (2,abc), (1,xyz), and (2,xyz).  
Three of these pairs cause the OR pattern to evaluate to true, so the 
rule is activated three times.  Only the (1,xyz) pair causes both 
clauses of the OR pattern to be false, so it doesn't appear in the list of 
activations.

QUANTIFIED PATTERNS
Quantified patterns are patterns containing one or more quantified 
variables, which are marked with the EXISTS or FOR_ALL keywords. 
The EXISTS keyword marks a variable as existentially quantified; 
the FOR_ALL keyword marks a variable as universally quantified. 
NOTE: The scope of quantified variables is restricted to the quanti-
fied pattern.  A quantified variable cannot be used in more than one 
pattern in a rule.  The following example in Figure 72 shows an 
incorrect usage:

In this incorrect example the same variable is used in a quantified 
pattern (the first pattern) and in the second pattern.  This is disal-
lowed because the scope of the quantified variable ?i is restricted 
to the quantified pattern.  Using the same variable elsewhere in the 
rule implies a connection between the two usages of ?i, but there is 
no connection because of the restricted scope of the quantified vari-
able.

RULE: Incorrect Example
IF 
( FOR_ALL ?i ( ?i <= 4 ) )
(?i >= 0 )
THEN ...

Figure 72. An Incorrect Example
RM APP– 310



  
A FOR_ALL pattern will activate a rule once if all bindings for the 
quantified variable(s) satisfy its subpattern.  The behavior of this 
type of pattern is fairly straightforward in most usages, but special 
care must be taken when mixing quantified variables with non-
quantified variables.

An EXISTS pattern will activate a rule once if there are one or more 
bindings for the quantified variable(s) which satisfy the subpattern 
in the EXISTS pattern.  The behavior of this type of pattern is fairly 
straightforward in most usages, but special care must be taken when 
mixing quantified variables with non-quantified variables. The 
examples below show the behavior of several types of EXISTS pat-
terns.

All examples use the following simplified example mental model 
of Figure 73, which consists of several Integer objects and String 
objects, some of which are named instances.

Rule 1 contains a regular object pattern (i.e., not a quantified pat-
tern). The rule will be activated once for every Integer object in the 
belief base which is greater than or equal to 0, so Rule 1 will be 
activated twice. See Figure 74. 

In Rule 2, the object pattern from Rule 1 is now a subpattern in an 
EXISTS pattern.  Rule 2 will be activated only once, even though 
there are two Integer objects in the mental model which satisfy the 
test in the subpattern. The variable ?i is a quantified variable so it 
doesn't matter how many bindings will satisfy the test in the subpat-

Mental Model: 
Integer<> 1   
Integer<> 2   
String<s1> "abc"   
String<s2> "abc"

Figure 73. Example Mental Model
RM APP– 311



  
tern, as long as there is at least one.  The mental model could con-
tain hundreds of Integer objects with non-negative values and Rule 
2 would still fire only once. Rule 2 is shown in .

Rules 3 and 4 are examples of badly-written rules.  In each case the 
quantified variable (i.e., the Float variable ?f in Rule 3, and the 
String variable ?s in Rule 4) doesn't match the variable in the sub-
pattern.  The pattern in Rule 3 asks the question:

  Does there exist a Float object in the mental model such that there 
is a String object in the mental model equal to abc? See Rule 3 in 
Figure 76. 

This pattern is not satisfied by any combination of objects in the 
mental model, because there are no Float objects, so Rule 3 will 
not fire at all.  The fact that the subpattern is satisfied (twice) 

RULE: Rule 1
IF
( ?i >= 0 ) 
THEN ...

Figure 74. Example Rule 1

RULE: Rule 2
IF
( EXISTS ?i ( ?i >= 0 ) ) 
THEN ...

Figure 75. Example Rule 2

RULE: Rule 3 - BAD PATTERN
IF ( EXISTS ?f ( ?s EQUALS "abc" ) ) 
THEN ...

Figure 76. Example Rule 3
RM APP– 312



  
doesn't matter--evaluation is halted due to the lack of a binding for 
the Float variable.

The pattern in Rule 4 asks the question:

  Does there exist a String object in the mental model such that 
there is an Integer object in the mental model with a non-negative 
value?

The pattern in Rule 4 in Figure 77 also has a mismatch between the 
quantified variable and the variable in the subpattern, but Rule 4 
will fire twice.  There is at least one binding for a String variable 
(even though the value is not tested at all) and there are two Inte-
ger bindings that satisfy the test in the subpattern, so the rule is 
fired twice.  Rules 4b and 4c are shown for comparison.  The pat-
tern in Rule 4b is equivalent to the pattern in Rule 4, for this mental 
model. (In general they are not equivalent).  For this example men-
tal model, Rule 4b will fire twice and Rule 4c will fire four times.  
These rules are shown here for comparison with Rule 4, to show 
why Rule 4 fires twice given the example belief base.  

RULE: Rule 4 - BAD PATTERN 
IF ( EXISTS ?s ( ?i >= 0 ) ) 
THEN ...

RULE: Rule 4b 
IF ( EXISTS ?s (( ?s EQUALS "abc" ) AND ( ?i >= 0 ))) 
THEN ...

RULE: Rule 4c 
IF
( ( ?s EQUALS "abc" ) AND ( ?i > 0 ) )
THEN ...

Figure 77. Rule 4 with a Bad Pattern
RM APP– 313



  
There are situations where rules such as Rule 4b or Rule 4c are used 
in correct programs.  It's possible and sometimes useful to mix 
quantified variables and non-quantified variables in subpatterns, as 
was done in Rule 4b.  The pattern in Rule 5 asks the question:

  Does there exist (at least one) PriceQuote object for every Product 
object in the mental model?

This rule will fire once for every Product in the mental model 
which has at least one PriceQuote associated with it (based on a 
comparison of the names in each object).  In this pattern the Prod-
uct variable ?p is not quantified, the PriceQuote variable ?q is 
quantified.  This type of pattern would be used in situations where 
you want to fire the rule if there is at least one PriceQuote for a 
Product, but you don't want the rule to fire more than once if there 
are multiple PriceQuotes associated with the same Product.

 Vacuously True Quantified Patterns
Some quantified patterns may evaluate to true in situations where 
there are no matching beliefs.  For example, consider the following 
mental model and the two example rules shown in Figure 79:

Rule 1 asks the question:   Is it true that every Float in the mental 
model has a value less than 3?

The answer is yes because there are no Float objects in the belief 
base, hence there are no Float objects that could fail the test in the 

RULE: Rule 5
IF
(EXISTS PriceQuote<?q> 

(Product<?p>.Name EQUALS PriceQuote<?q>.ProductName))
THEN ...

Figure 78. Example Rule 5
RM APP– 314



  
subpattern.  In logic this kind of pattern is labeled "vacuously true", 
because the truth value of the pattern depends on the fact that there 
are no elements to test.  In the AgentBuilder run-time system the 
pattern will evaluate to true (in this particular example), but the 
activation of the rule will be suppressed because of refraction.

Rule 2 is equivalent to Rule 1; Rule 2 asks the question:   Is it true 
that there does not exist a Float in the mental model with a value 
greater than or equal to 3?

This is of course true because there are no Floats in the mental 
model, hence there are no Floats with value >= 3.  The pattern in 
Rule 2 also evaluates to true (in this particular example) but the 
activation of the rule is also suppressed because of refraction.

To ensure that the the rules get activated, modify rules 1 and 2 by 
adding a pattern that will always bind to a new belief.  Rules 1b and 
2b show the modified rules 1 and 2, with the added BIND pattern.  
The added pattern binds the built-in currentTime instance which is 
maintained by the run-time system and which is guaranteed to be a 
new belief each cycle.  Therefore the activation of rules 1b and 2b 

Mental Model:
Integer<> 4  
Integer<> 5

RULE: Rule 1
IF ( FOR_ALL ?f ( ?f < 3 ) ) 
THEN ...

RULE: Rule 2 
IF
( NOT ( EXISTS ?f ( ?f >= 3 ) ) ) 
THEN ...

Figure 79. Vacuously True Quantified Patterns
RM APP– 315



  
will not be suppressed by refraction.  The rules will be activated 
whenever their first patterns evaluate to true. See Figure 80. 

BIND Patterns and the EXISTS Patterns
A BIND pattern will contribute to the activation of a rule once per 
new matching belief object. An EXISTS pattern will contribute to a 
single activation if there is at least one new matching belief object. 
The example shown in will make this more clear.  In this first 
example assume all the Integer objects have been stored into the 
mental model during the last cycle, so we don't need to worry about 
refraction (yet).

Example 1
Rule 1 shows a BIND pattern with an Integer variable.  This the 
simplest type of pattern.  A BIND pattern is satisfied if there exists a 
binding for its variable.  Given the mental model containing two 
Integer objects, Rule 1 will fire three times, once for each Integer 
binding.

Rule 2 shows an EXISTS pattern enclosing a BIND pattern.  Given the 
same mental model Rule 2 will only fire once.  Rule 2 will fire once 

RULE: Rule 1b
IF
( FOR_ALL ?f ( ?f < 3 ) )    
( BIND currentTime )
THEN ...

RULE: Rule 2b 
IF 
( NOT ( EXISTS ?f ( ?f >= 3 ) ) )    
( BIND currentTime ) 
THEN ... 

Figure 80. Ensuring Rule Activation
RM APP– 316



  
regardless of the number of Integer objects in the mental model, as 
long as there is at least one new Integer object.

Testing for the absence of an object involves a problem due to 
refraction.  The activation of a rule will be suppressed if there is not 
at least one matching new belief used in at least one of the patterns.  
A simple rule such as Rule 4 will never be activated because the 
only time the pattern is satisfied is when there are no matching 
objects, hence there are no new matching objects to satisfy the 
refraction test.  Rule 5 shows the recommended way to test for the 
absence of an object.  The (BIND currentTime) pattern will always 
be satisfied because the currentTime maned instance is a built-in 
object in the mental model.  And the currentTime instance is 
always a new belief every cycle, so any rule containing a pattern 
such as (BIND currentTime) will never have its activation sup-
pressed due to refraction. See Figure 82. 

BELIEFS 
Integer<> 23  
Integer<> 34  
Integer<> 45

RULE: Rule 1 
IF ( BIND ?i )
THEN ...

RULE: Rule 2
IF ( EXISTS ?i ( BIND ?i ) 
THEN ...

Figure 81. Example 1. More on Binding and Existentials
RM APP– 317



  
RRULE: Rule 3 - Will never be activated 
IF 
(NOT (BIND ?i)) 
THEN ...

 RULE: Rule 4 - correct 
IF 
(NOT (BIND ?i)) 
(BIND currentTime) 
THEN ... 

Figure 82. Rule 5 - the Final Example
RM APP– 318



  
Appendix  D.  Default Ontology 
Object Model (Printable)

Class Name: 
com.reticular.agentBuilder.agent.perception.RmiCommInfo
Description: The Supporting class for the Pac Comm System.
This contains all of the necessary information 
for implementing RMI style communication.
Package: com.reticular.agentBuilder.agent.perception
Attributes:
   int rmiRegistryPort;
Methods:
   public Object clone()
   public  RmiCommInfo( int rmiPortNumber )
   public  RmiCommInfo()
   public String getCommType()
   public String toBNFString()
   public boolean equals( Object param0 )
   public int getRmiRegistryPort()
   public void setRmiRegistryPort( int rmiPortNumber )
RM APP– 319



  
Class Name: 
com.reticular.agentBuilder.agent.mentalState.Time
Description: The Supporting class for time in the sytem.
The string and number integers are for
getting at the time representation.
Package: com.reticular.agentBuilder.agent.mentalState
Attributes:
   Long number;
   String string;
Methods:
   public Long getNumber()
   public Object clone()
   public String getString()
   public String toString()
   public  Time( int year ,  int month ,  int day ,  int 
hour ,  int minute ,  int second )
   public  Time()
   public boolean after( 
com.reticular.agentBuilder.agent.mentalState.Time param0 )
   public boolean before( 
com.reticular.agentBuilder.agent.mentalState.Time param0 )
   public boolean equals( Object param0 )
RM APP– 320



  
Class Name: 
com.reticular.agentBuilder.agent.mentalState.Agent
Description: This class contains the information that an 
agent
"believes" about itself.  An instance of this
class exists for each agent known.  The instance 
about oneself is called the "SELF" instance.
Package: com.reticular.agentBuilder.agent.mentalState
Attributes:
   String userName;
   com.reticular.agentBuilder.agent.perception.AgentInfo 
agentInfo;
Methods:
   public Agent( 
com.reticular.agentBuilder.agent.perception.AgentInfo 
agentInfo )
   public Agent( 
com.reticular.agentBuilder.agent.perception.AgentInfo 
agentInfo ,  String[] agencies )
   public Object clone()
   public String getCommType()
   public String getIPAddress()
   public String getName()
   public String getUserName()
   public String toBNFString()
   public String toString()
   public boolean equals( Object param0 )
   public 
com.reticular.agentBuilder.agent.perception.AgentInfo 
getAgentInfo()
   public void print()
   public void setAgentInfo( 
com.reticular.agentBuilder.agent.perception.AgentInfo param0 
)
   public void setIPAddress( String param0 )
   public void setName( String param0 )
   public void setUserName( String param0 )
RM APP– 321



  
Class Name: 
com.reticular.agentBuilder.agent.perception.KqmlMessage
Description: This class represents the KQML container
for the system.  All KQML messages 
are represented as KqmlMessage class
instantiations.
Package: com.reticular.agentBuilder.agent.perception
Attributes:
   String from;
   String inReplyTo;
   String language;
   String ontology;
   String performative;
   String protocol;
   String receiver;
   String replyWith;
   String sender;
   String senderURL;
   String sentTime;
   String to;
   Class contentType;
   Object content;
Methods:
   public Class getContentType()
   public  KqmlMessage()
   public Object clone()
   public Object getContent()
   public String getFrom()
   public String getInReplyTo()
   public String getLanguage()
   public String getOntology()
   public String getPerformative()
   public String getProtocol()
   public String getReceiver()
   public String getReceiverName()
   public String getReplyWith()
   public String getSender()
   public String getSenderName()
   public String getSenderURL()
   public String getSentTime()
   public String getTo()
   public String toString()
RM APP– 322



  
   public boolean equals( Object param0 )
   public void setContent( Object param0 )
   public void setContentType( Class param0 )
   public void setFrom( String param0 )
   public void setInReplyTo( String param0 )
   public void setLanguage( String param0 )
   public void setOntology( String param0 )
   public void setPerformative( String param0 )
   public void setProtocol( String param0 )
   public void setReceiver( String param0 )
   public void setReceiverName( String param0 )
   public void setReplyWith( String param0 )
   public void setSender( String param0 )
   public void setSenderName( String param0 )
   public void setSenderURL( String param0 )
   public void setSentTime( String param0 )
   public void setTo( String param0 )
RM APP– 323



  
Class Name: 
com.reticular.agentBuilder.agent.perception.AgentInfo
Description: The Supporting class for the Pac Comm System.
It contains the information needed for communication.
Package: com.reticular.agentBuilder.agent.perception
Attributes:
   String IPAddress;
   String name;
   com.reticular.agentBuilder.agent.perception.RmiCommInfo 
rmiCommInfo;
Methods:
   public AgentInfo( String agentName ,  String IPAddress ,  
com.reticular.agentBuilder.agent.perception.RmiCommInfo 
rmiCommInfo )
   public  AgentInfo()
   public Object clone()
   public String getIPAddress()
   public String getName()
   public String toBNFString()
   public String toString()
   public boolean equals( Object param0 )
   public 
com.reticular.agentBuilder.agent.perception.RmiCommInfo 
getRmiCommInfo()
   public void setRmiCommInfo( 
com.reticular.agentBuilder.agent.perception.RmiCommInfo 
param0 )
RM APP– 324



  
Class Name: 
com.reticular.agentBuilder.agent.perception.PacCommSystem
Description: The Support for the Pac Communication.
Package: com.reticular.agentBuilder.agent.perception
Attributes:
Methods:
   public Object clone()
   public  PacCommSystem( 
com.reticular.agentBuilder.agent.perception.AgentInfo 
agentInfo ,  String pacName )
   public void sendKqmlMessageToAgent( 
com.reticular.agentBuilder.agent.perception.KqmlMessage 
param0 )
RM APP– 325



  
RM APP– 326



  
Appendix E.  Agent Description 
(Printable)

Agent-name: HelloWorld
Creation-time: Wed Aug 26 13:30:41 PDT 1998
Description: Hello World agent with a full GUI and 
demonstrating
connections between the agent and the user interface.
Location: 
Author: sonny
Vendor: Acronymics, Inc.
Ontologies: [Quick Tour Ontology]
Agencies: [Hello World Agency]

Actions:
Name:Start  based on:HelloWorldFrame::run
Name:Print  based on:HelloWorldFrame::print

Commitments:

JAVA Instances:

PACs:
com.reticular.agents.helloWorld.HelloWorldFrame
com.reticular.agentBuilder.agent.perception.PacCommSystem
com.reticular.agentBuilder.agent.perception.KqmlMessage
com.reticular.agentBuilder.agent.mentalState.Time
RM APP– 327



  
com.reticular.agentBuilder.agent.perception.RmiCommInfo
com.reticular.agentBuilder.agent.perception.AgentInfo
com.reticular.agentBuilder.agent.mentalState.Agent

PAC Instances:
Name:currentTime  Type:Time Initial Pac:False
Name:SELF  Type:Agent Initial Pac:False
Name:startupTime  Type:Time Initial Pac:False
Name:myHelloWorldFrame  Type:HelloWorldFrame Initial 
Pac:False

Rules:
Name: Print Greeting
Description: Activated by a message from the 
myHelloWorldFrame PAC.
It calls the "Print" action which in turn fires an action 
to write
out a string to the interface. 
( %incomingMessage.sender EQUALS  "HelloWorld:PAC"  )
( %incomingMessage.performative EQUALS  "achieve"  )
( %incomingMessage.contentType EQUALS String  )
( %incomingMessage.content EQUALS  "Say Hello"  )
DO Print ( Concat (  "HelloWorld! the time is: " , 
currentTime.string ) )
DO SleepUntilMessage (  )

Name: Build HelloWorldFrame
Description: Activated by the agent belief instance 
"SELF".  The SELF belief is 
automatically created by the agent engine at startup.  
The RHS causes the myHelloWorldFrame instance to be 
created. 
( BIND startupTime )
ASSERT(  "myHelloWorldFrame"  HelloWorldFrame ( 
PacCommSystem ( SELF.agentInfo,  "HelloWorld:PAC"  ) )) 

Name: Quit
Description: Activated by a message from the 
myHelloWorldFrame PAC.
RM APP– 328



  
It calls the built in action "shutdownEngine". 
( %incomingMessage.sender EQUALS  "HelloWorld:PAC"  )
( %incomingMessage.performative EQUALS  "achieve"  )
( %incomingMessage.contentType EQUALS String  )
( %incomingMessage.content EQUALS  "Quit"  )
DO ShutdownEngine (  )

Name: Launch Interface
Description: Activates after the creation of the 
myHelloWorldFrame instance.
It connects the appropriate actions to the appropriate 
methods,
and launches the interface onto a separate thread.  The 
rule then
executes the sleepUntilMessage action which causes the
agent to sleep. 
( BIND myHelloWorldFrame )
DO ConnectAction (  "Print" , myHelloWorldFrame )
DO ConnectAction (  "Start" , myHelloWorldFrame )
DO Start (  )
DO RemoveRule (  "Build HelloWorldFrame"  )
DO RemoveRule (  "Launch Interface"  )
DO SleepUntilMessage (  )
RM APP– 329



  
RM APP– 330



Index

Symbols
 .........................................81, 151
.java extension .........................48

A
About AgentBuilder 22, 58, 66, 79, 
............83, 92, 107, 153, 161, 176
About AgentBuilder menu ..6, 22, 
79, ......83, 92, 107, 153, 161, 176
About menu ................................6
accumulator ....................112, 180
accumulator paradigm ................8
accumulator text .........................8
achieve .....................................10
Action ...............................81, 150
action ..................84, 87, 153, 157
Action Editor ....................79, 149
Action Properties 80, 81, 82, 149, 
150, ................................151, 152
Actions 68, 86, 119, 120, 126, 128, 
155, 186, 187, 188, 195, 196, 222
actions ..................5, 67, 108, 176
Actions Panel ...................79, 149
Add .................................118, 186
Add All ............95, 145, 165, 213
Add button .................................9
Add Directory ........................255
Add File .................................254
Add RADL File... ..................254
Agencies .............................21, 70
agencies ................................4, 12
Agencies Dialog .................70, 71

Agencies… ...............................69
Agency Manager 20, 21, 22, 50, 52, 
..................................53, 144, 212
Agency Properties ..............51, 57
Agency Viewer 50, 58, 60, 62, 63, 
64, ............................................66
agency-mode ............................60
agent definitions .........................4
Agent Engine .................8, 12, 21
agent engine ...........................252
Agent Engine Console ...........263
Agent Engine Cycle ...............281
Agent Engine Options .75, 76, 78, 
254, ........................................255
Agent Engine Threads ...........282
Agent Manager .5, 20, 22, 67, 89, 
158
Agent Properties ................64, 73
Agent Status .............................62
AgentBuilder Home Page .22, 66, 
79, ......83, 92, 107, 153, 161, 176
AgentBuilder Home Page menu 6
AgentBuilder Properties ....16, 18
AgentBuilderDestroyablePac .223
Agents ......................................51
All Beliefs ......................255, 257
All Roles ........................139, 208
analysis .......................................8
Appearance ..............................18
ASSERT() ......................128, 196
assertion .........................128, 196
Assign Agent(s) .............144, 213
Assign Agents Dialog ..............55
Assign JVM .............................55
Index - 1



Index

associated object ......................32
Attributes ...................................8
attributes .....................................8
Author ......................................69
Available Agents ......55, 144, 213
Available Classes .............93, 164
Available Objects .............93, 164

B
beliefs .......................................67
bidirected link ..........................28
Binding Dialog ...............115, 183
blocking .................................222
Browse .........................16, 18, 70
Built-In Actions ...............86, 155
Built-in Actions ..............126, 195
built-in actions .......................272

C
C/C++ .....................................218
Cancel button ...........................15
Casting Type ..................116, 185
CDE/Motif ...............................19
Changed Beliefs .....................255
Changing the Link Type ..........31
Chapter overview .......1, 217, 251
Choose RADL File Location ...74
Class .........................................44
Clear .......................................266
Clear Error .............................261
Clear Verbose Options ...255, 259

Close Console ........................267
collapse icon ............................13
Color Dialog ............................19
Colors .......................................19
com.reticular.agentBuild-
er.agent.perception.DefaultKqml-
Converter .................................20
commitment 85, 90, 155, 159, 160
Commitment Editor ..84, 92, 153, 
161
Commitment Properties 84, 85, 90, 
154, ................................155, 160
Commitments ...................69, 186
commitments ...5, 67, 84, 91, 153, 
161
Committed To ..................86, 156
Communications Dialog ....71, 72
Communications… ..................69
Company ..................................69
Complex Parameter ...87, 99, 100, 
101, ................156, 158, 167, 169
concept map .............................33
Concept Mapper .....27, 28, 33, 35
Concept Mapping .....................26
Concept Properties Dialog .......31
concepts ...................................28
Conditions 113, 114, 120, 181, 189
conditions .......................108, 176
ConnectAction .......................272
Constructor .....................101, 169
constructor .............................229
Constructor Dialog ...........99, 167
Constructor Tree 99, 100, 167, 169
Content Type ..................136, 206
Index - 2



Index

Copy .................14, 25, 30, 40, 69
CopyOf ...................15, 26, 30, 40
Create JVM ..............................54
Cut ....................14, 25, 30, 40, 69

D
date .............................89, 90, 159
day ....................................89, 159
Defined Action ...........81, 82, 151
Defined Actions .81, 82, 149, 152
Defined Commitment's ....86, 156
Defined Commitments 84, 90, 91, 
155, ........................................160
Defined Instances ..102, 104, 170, 
172
Defined Java Instance ....105, 173
Defined Java Instances ..105, 107, 
173, ........................................175
Defined PACs ..................97, 165
Defined RHS Elements .119, 122, 
123, ........................187, 190, 191
Defined Variable ............125, 193
Defined Variable dialog ...........10
Defined Variables .116, 120, 126, 
128, ........185, 189, 194, 195, 196
Delete .................................15, 69
Delete button ............................10
Deleting an Existing Concept ..31
Deleting an Existing Link ........31
Description ...69, 87, 99, 156, 167
Diagram .........134, 142, 203, 210
directed link .............................28
Directories ................................16

Directory ..........................16, 255
directory .....................................4
Directory Dialog ......................48
Down button ............................10

E
Edit ...........................................16
Edit menu .................................15
Engine Cycle Time ............69, 70
Engine Launcher… ................269
EngineLauncher .......................21
EQUALS ..................................10
Error File… ............................261
Error Log Location ..................18
event handler ..........................230
Everything ..............................255
Exec ...........................58, 61, 271
Exit ...........................................22
Exit Run-Time System ...........267
expand icon ..............................13
Export Dialog ...........................47
ExportingJava Files ..................46

F
File .........................................255
File Dialog ...............................75
Fired Rules .....................255, 258
Font Size ..................................19
Freeze .....................................266
Index - 3



Index

G
Generate Agent Definition .......74
Generate Java ...........................47
Generate Printable 33, 43, 73, 141, 
210
generated classes ........................4
GetCycleTime ........................272
GetHostAddress .....................272
GetHostName .........................273
GetSystemProperty ................273

H
Help menu .5, 22, 79, 83, 92, 107, 
153, ................................161, 176
hierarchical tree ................87, 156

I
Icon Dialog ........................64, 70
Import Class Files ....................44
Import Dialog .............44, 93, 164
Import inherited attributes and 
methods ....................................45
Import Protocol ........................53
Importing Class Files ...............44
Index .22, 57, 65, 79, 83, 92, 107, 
153, ................................161, 176
Index menu ................................6
Initial Java Instance .......104, 173
Initial PAC .......................99, 167
InputDialog ............................218
In-Reply-To ...................137, 206

Instance Properties ..98, 102, 167, 
170
Instances 118, 120, 125, 126, 128, 
185, ........186, 189, 193, 194, 196
Intentions ...............................186

J
Java 36, 47, 48, 89, 101, 105, 120, 
159, 169, 173, 189, 222, 226, 227, 
231
Java Bean .................................39
Java Development Environment ..
252
Java Instance Properties 104, 105, 
172, ................................173, 175
Java Instances 92, 93, 104, 162, 172
Java Native Interface .............218
Java reflection ..........................44
Java Types ..............115, 116, 183
Java Virtual Machine .............252
JNI ..........................................218

K
KQML ............................227, 275

L
LHS ................................108, 176
Link ..........................................33
link label ..................................42
Link Properties ...................31, 42
Index - 4



Index

Link Type .................................31
links ..........................................28
Load RADL File… ........267, 268
Look and Feel ..........................19

M
Make Object .............................28
Map ........28, 34, 36, 44, 134, 203
Map menu ..........................29, 40
mental changes ...............108, 176
mental condition ............108, 177
Mental Condition Rule Editor ....9
Mental Conditions .113, 118, 181, 
186
menu .........................................28
Message Buffer Size ................63
message condition ....10, 108, 177
Message Conditions 113, 118, 181, 
................................................186
Message History ......................61
Message Log ............................63
Messages ................................255
Metal ........................................19
Method .............................81, 151
month ...............................89, 159
Move Down ...........................255
Move Up ................................255
Moving an Existing Concept ...30
MultiAgent Engine ................270

N
Name ...69, 88, 99, 104, 158, 167, 
172
New ................118, 122, 186, 189
New Action ....................122, 189
new action ........................81, 150
New Agency ............................14
New Agent ...............................14
New Agent… ...........................53
New button .................................9
New Concept ............................28
New Condition ...............118, 186
New Link menu item ...............30
New Object ..............38, 120, 189
New Objects ...................128, 197
New Ontology menu ................25
New Project ..............................14
New Protocol .................131, 200
New Rule .......................123, 192
New State .......................134, 203
New Transition ..............136, 205
New Variable .................114, 183
New Variable dialog ................10
No Console ............................260
No System.err ........................261
No System.out ........................260

O
Object Model ...................94, 164
object model .............................36
Object Modeler 26, 27, 28, 32, 36, 
37, ..43, 46, 49, 89, 101, 158, 169
Index - 5



Index

objects ........................................8
ontologies ...................................4
Ontologies Dialog ....................71
Ontologies… ............................69
ontology ...................27, 101, 169
Ontology Manager .......20, 22, 23
Ontology Properties .................26
Open Agency ...........................52
OpenConsole ..........................273
OpenInputDialog ...................274
OpenOutputDialog .................276
Operators ..10, 113, 120, 181, 187
Options ...4, 16, 20, 58, 68, 74, 75
Output Dialog ........................219
Output File .............................260

P
PAC .87, 124, 157, 193, 218, 226, 
283
PAC Editor ....89, 92, 93, 98, 104, 
108, ........158, 162, 166, 172, 176
PAC Instance .................102, 170
PAC Instances 92, 93, 98, 162, 167
Package ....................................44
PACs 67, 92, 93, 96, 115, 120, 162, 
........165, 183, 189, 221, 222, 227
Panel Options .....93, 96, 162, 165
Parameter ..87, 99, 100, 156, 158, 
167, ........................................169
Parameter Tree .................87, 156
parameter tree ..................89, 159
Parameters Dialog ............90, 160
Paste .................14, 25, 30, 40, 69

pattern ........................................8
Pause ........................................61
Performative ...........................232
pop-up menus ...........................13
Predicate methods ..........126, 194
Program Output ......................259
Project Accessory Class .........218
Project Manager .....4, 5, 8, 22, 64
project manager ........................12
Project Properties .....................14
project tree ...........................5, 13
Projects .....................................14
projects .................................4, 12
Properties 15, 31, 32, 40, 42, 51, 56, 
..............64, 68, 74, 112, 123, 192
properties .................................67
Properties Dialog .....64, 136, 205
Properties… ....26, 132, 138, 143, 
201, ................................207, 212
Protocol Editor 130, 133, 134, 141, 
........142, 200, 202, 203, 210, 211
Protocol Editor. ..............144, 212
Protocol Manager 21, 22, 130, 199
Protocol Tree ..................131, 200
Protocols ..................................51

R
RADL .........................4, 252, 254
RADL file ................................74
Register Mode ..........................60
RegisterAgent ........................276
relations ....................................28
Remove ..................................255
Index - 6



Index

Remove RADL File ...............254
RemoveRule ...........................276
Reply-With .....................137, 206
repository ...................................4
Reset .........................................61
Reset Engine ..........................269
Restart All Engines ................271
return value ............................223
Return Variable ..............121, 189
RHS ................................108, 177
RHS Editor .....................119, 187
role .................................141, 210
Role Editor 50, 144, 146, 212, 215
Role Editor, ....................142, 211
Role Properties 141, 143, 210, 212
roles 133, 136, 140, 202, 205, 209
Roles Dialog ..................139, 208
Roles… ..........................139, 208
Rule Editor 10, 92, 104, 108, 111, 
123, ........162, 172, 176, 180, 192
rule editor ...................................5
Rule Properties .......112, 113, 181
Rule Properties Dialog ...123, 192
Rules ..............................108, 176
rules ..........................................67
Run ...........................................21
Run Agent ................................75
run() method ..........................230
Run-Time System ..................252

S
Save ........................................266
Save Run ..................................63

Save Run As .............................63
Search menu ...............................6
Security… ................................69
Select All ............................47, 54
Select Directory .......................48
Selected Agents ........55, 145, 213
Selected Objects ..93, 94, 95, 164, 
165
SendKqmlMessage ................276
Set Engine Options ..................78
SetCycleTime .........................278
Show Messages ........................64
ShutdownTime .................87, 156
Sleep .......................................278
SleepUntilMessage ................278
SleepWhenIdle .......................278
slot markers ..............................10
Sockets panel ...........................20
Sockets tab ...............................20
Specify Constructor .......102, 170
Specify Parameter Values 86, 155, 
156
StartupTime .....................87, 156
State ...............................134, 203
state diagram ..................133, 202
State Table .....................139, 207
SystemOutPrintln ...................279

T
Tab Placement ....................51, 68
templates ....................................5
Terminate All Engines ...........271
Terminate Engine ...........269, 270
Index - 7



Index

thread .....................................222
Thread priorities .....................282
Time ...................86, 90, 156, 160
time ............................89, 90, 159
Time Dialog .87, 89, 90, 156, 159
toolkit .........................................2
Tools ........23, 130, 133, 199, 202
Tools menu ................................7
Trace File ...............................258
Trace File... ............................255
Transition Properties ..............138
tree paradigm .............................8
Tutorial 22, 58, 65, 79, 83, 92, 107, 
................................153, 161, 176
Tutorial menu .............................6
Type .................................88, 158
Types ........................................38

U
Undefined Types ......................46
undirected link .........................28
Unpause ...................................61
Up button .................................10
Update Agent .................146, 214
Update All Agents .........146, 215
Update Dialog ............46, 98, 166
Update Objects .........................46
Update Protocols ......................54
Update Protocols Dialog ..........54
User Defined Actions .......86, 155
User Files ...................................4
User Info ..................................16

V
Value ................................88, 158
Values 114, 120, 124, 182, 189, 193
Values dialog ...........................10
Variable Name ...............115, 183
Verbose Options ....................255

W
Windows 19, 23, 78, 91, 107, 161, 
175
Windows menu ....................5, 22

Y
year ...................................89, 159
Index - 8


	AGENTBUILDER
	Table of Contents
	Chapter 1 - Agent Construction Tools RM-1
	Chapter 2 - Project Accessories Class Library RM-217
	Chapter 3 - Run-Time System RM-251
	Appendix A. Intrinsics RM-287
	Appendix B. Runtime Agent Definition Language RM-293
	Appendix C. Operators and Patterns RM-301
	Appendix D. Default Ontology Object Model (Printable) RM-319
	Appendix E. Agent Description (Printable) RM-327

	List of Figures
	List of Tables
	Chapter 1
	Agent Construction Tools
	A. Overview of the Toolkit
	Tool Introduction
	User Files

	Common Interface Features
	Windows menu
	Help Menus
	Tools Menu
	Tree Paradigm
	Building Complex Expressions
	More Information


	B. Project Manager
	Overview
	Operation
	Using the Project Tree
	Creating a New Project
	Creating a New Agency
	Creating a New Agent
	Cutting, Copying and Pasting an Agent
	Modifying Project, Agency and Agent Properties
	Deleting Projects, Agencies and Agents
	Editing AgentBuilder Properties
	Launching AgentBuilder Tools
	Switching AgentBuilder Windows
	Accessing Help
	Exiting AgentBuilder


	C. Ontology Manager
	Ontology Manager
	Overview
	Operation
	Using the Ontology Tree
	Creating a New Ontology
	Cutting, Copying and Pasting an Ontology
	Modifying Ontology Properties
	Deleting Ontologies
	Launching Ontology Tools
	Switching AgentBuilder Windows
	Accessing Help
	Exiting AgentBuilder

	Concept Mapper
	Overview
	Operation
	Creating a New Concept
	Cutting, Copying and Pasting a Concept
	Creating a New Link
	Moving an Existing Concept
	Moving Multiple Concepts
	Deleting an Existing Concept
	Deleting an Existing Link
	Changing the Link Type of an Existing Link
	Viewing and Altering the Properties of an Existing Concept
	Creating an Associated Class from an Existing Concept
	Viewing and Altering the Properties of an Existing Link
	Saving a Concept Map
	Saving the Concept Map to a File
	Clearing a Concept Map
	Switching Windows
	Accessing Help
	Closing the Concept Mapper
	Exiting AgentBuilder

	Object Modeler
	Overview
	Operation
	Creating a New Class
	Cutting, Copying and Pasting a Class
	Viewing and Altering the Properties of an Existing Class
	Creating a New Link
	Moving an Existing Class
	Moving Multiple Classes
	Deleting an Existing Class
	Deleting an Existing Link
	Changing the Link Type of an Existing Link
	Viewing and Altering the Properties of an Existing Link
	Saving a Object Model
	Saving the Object Model to a File
	Clearing an Object Model
	Importing Class Files
	Updating Objects
	Listing Undefined Classes
	Exporting Java Files
	Switching Windows
	Accessing Help
	Closing the Object Modeler
	Exiting AgentBuilder


	D. Agency Manager
	Agency Manager
	Using the Agency Manager
	Using the Tabbed Pane
	Opening an Agency
	Saving the Current Agency
	Creating a New Agent
	Importing a Protocol
	Updating Protocols
	Creating a JVM Group
	Assigning Agents to a JVM Group
	Viewing/Editing Agency Properties
	Switching Windows
	Accessing Help
	Exiting AgentBuilder

	Agency Viewer
	Overview
	Operation: Running an Agency
	Setting Agency in Register Mode
	Registering the Agents
	Running and Resetting agents
	Pausing and Unpausing the agents
	Displaying the Agent's Message History Dialog
	Displaying the Agent's Status Window
	Opening and Saving Runtime Messages
	Specifying Message Buffer Size
	Creating a Runtime Message log
	Handling High Volumes of Communication
	Viewing and Altering the Properties of the Agency
	Viewing and Altering the Properties of the Agent
	Changing the Agent's Icon
	Saving Agency Properties
	Switching Windows
	Accessing Help
	Closing the Agency Viewer
	Exiting AgentBuilder


	E. Agent Manager
	Overview
	Operation
	Using the Tabbed Pane
	Creating a New Agent
	Opening an Agent
	Saving the Current Agent
	Saving the Agent to a File
	Viewing/Editing Agent Properties
	Generating the Agent Definition
	Running the Agent
	Running Multiple Agents on Different Machines
	Switching Windows
	Accessing Help
	Exiting AgentBuilder

	Action Editor
	Overview
	Operation
	Creating an Action
	Adding an Action
	Viewing Defined Actions
	Editing a Defined Action
	Deleting a Defined Action
	Saving the Actions
	Switching Windows
	Accessing Help
	Closing the Action Editor
	Exiting AgentBuilder

	Commitment Editor
	Overview
	Operation
	Creating a Commitment
	Specifying Parameter Values
	Specifying a User-Defined Time
	Adding a Commitment
	Editing a Defined Commitment
	Deleting a Defined Commitment
	Saving Commitments
	Switching Windows
	Accessing Help
	Closing the Commitment Editor
	Exiting AgentBuilder

	PAC Editor
	Overview
	Operation
	Importing PACs
	Packages and Short Names
	Viewing Defined PACs
	Deleting a Defined PAC
	Updating PACs
	Defining PAC Instances
	Specifying Constructors for PAC Instances
	Adding a PAC Instance
	Viewing Defined PAC Instances
	Editing a PAC Instance
	Deleting a Defined PAC Instance
	Creating Java Instances
	Adding a Java Instance
	Viewing Defined Java Instances
	Editing a Java Instance
	Deleting a Defined Java Instance
	Saving
	Switching Windows
	Accessing Help
	Closing the PAC Editor
	Exiting AgentBuilder

	Rule Editor
	Overview
	Rule Properties
	LHS Editor
	RHS Editor
	Action Panel
	Defined RHS Elements Panel
	Rule Editor Operations
	Creating a New Rule
	Loading an Existing Rule
	Constructing a Simple Mental Condition
	Direct Method Invocation
	Return Variable Naming
	Using a Predicate Method
	Constructing an Action Statement
	Building an Assertion with a New Object
	Closing the Rule Editor


	F. Protocol Manager.
	Overview
	Operation
	Using the Protocol Tree
	Creating a New Protocol
	Cutting, Copying and Pasting a Protocol
	Modifying Protocol Properties
	Deleting Protocols
	Launching Protocol Tools
	Switching AgentBuilder Windows
	Closing Protocol Manager
	Exiting AgentBuilder

	Protocol Editor
	Overview
	Operation
	Creating a New State
	Cutting, Copying and Pasting a State
	Creating a New Transition
	Moving a State
	Moving Multiple States
	Deleting a State
	Deleting a Transition
	Viewing and Altering State Properties
	Viewing and Altering Transition Properties
	Viewing the State Table
	Viewing Roles
	Creating Roles
	Cutting, Copying and Pasting Roles
	Deleting Roles
	Viewing and Modifying Role Properties
	Saving a Protocol
	Saving the Protocol to a File
	Clearing the Protocol
	Closing the Protocol Editor

	Role Editor
	Overview
	Operation
	Viewing and Modifying Role Properties
	Assigning Agents to Roles
	Updating an Agent
	Updating All Agents
	Saving the Roles
	Switching Windows
	Closing the Role Editor
	Exiting AgentBuilder

	Action Editor
	Overview
	Operation
	Creating an Action
	Adding an Action
	Viewing Defined Actions
	Editing a Defined Action
	Deleting a Defined Action
	Saving the Actions
	Switching Windows
	Accessing Help
	Closing the Action Editor
	Exiting AgentBuilder

	Commitment Editor
	Overview
	Operation
	Creating a Commitment
	Specifying Parameter Values
	Specifying a User-Defined Time
	Adding a Commitment
	Editing a Defined Commitment
	Deleting a Defined Commitment
	Saving Commitments
	Switching Windows
	Accessing Help
	Closing the Commitment Editor
	Exiting AgentBuilder

	PAC Editor
	Overview
	Operation
	Importing PACs
	Viewing Defined PACs
	Deleting a Defined PAC
	Updating PACs
	Defining PAC Instances
	Specifying Constructors for PAC Instances
	Adding a PAC Instance
	Viewing Defined PAC Instances
	Editing a PAC Instance
	Deleting a Defined PAC Instance
	Creating Java Instances
	Adding a Java Instance
	Viewing Defined Java Instances
	Editing a Java Instance
	Deleting a Defined Java Instance
	Saving
	Switching Windows
	Accessing Help
	Closing the PAC Editor
	Exiting AgentBuilder

	Rule Editor
	Overview
	Rule Properties
	LHS Editor
	RHS Editor
	Action Panel
	Defined RHS Elements Panel
	Rule Editor Operations
	Creating a New Rule
	Loading an Existing Rule
	Constructing a Simple Mental Condition
	Direct Method Invocation
	Using a Predicate Method
	Constructing an Action Statement
	Building an Assertion with a New Object
	Closing the Rule Editor


	A. Protocol Manager.
	Overview
	Operation
	Using the Protocol Tree
	Creating a New Protocol
	Cutting, Copying and Pasting a Protocol
	Modifiying Protocol Properties
	Deleting Protocols
	Launching Protocol Tools
	Switching AgentBuilder Windows
	Closing Protocol Manager
	Exiting AgentBuilder

	Protocol Editor
	Overview
	Operation
	Creating a New State
	Cutting, Copying and Pasting a State
	Creating a New Transition
	Moving a State
	Deleting a State
	Deleting a Transition
	Viewing and Altering State Properties
	Viewing and Altering Transition Properties
	Viewing the State Table
	Viewing Roles
	Creating Roles
	Cutting, Copying and Pasting Roles
	Deleting Roles
	Viewing and Modifying Role Properties
	Saving a Protocol
	Saving the Protocol to a File
	Clearing the Protocol
	Closing the Protocol Editor

	Role Editor
	Overview
	Operation
	Viewing and Modifying Role Properties
	Assigning Agents to Roles
	Updating an Agent
	Updating All Agents
	Saving the Roles
	Switching Windows
	Closing the Role Editor
	Exiting AgentBuilder



	Chapter 1
	Project Accessories Class Library
	A. Project Accessory Classes
	Input and Output
	External Processing
	Threading
	Arguments and Return Values
	PAC Interfaces
	Control Panel Design

	B. Building a Control Panel: The HelloWorld Example
	C. Building a Control Panel: A BuyerSeller PAC Example

	Chapter 2
	Run-Time System
	A. Run-Time System
	Run-Time Agent Engine
	Starting the Agent Engine
	Agent Engine Options
	RADL File
	Classpath
	Verbose Options
	Program Output
	Error Log
	Starting the Agent Engine from a Command Line
	Java options
	Table 1. AgentEngine Command Line Options
	Agent Engine Console

	Table 2. File Menu Keyboard Equivalents
	Table 3. Edit Menu Keyboard Equivalents
	Table 4. File Menu Keyboard Equivalents
	MultiAgent Engine Console
	Built-in Actions
	Kqml Message Failure Handling
	Agent Engine Cycle
	Agent Engine Threads
	Appendix B. Runtime Agent Definition Language
	Appendix C. Operators and Patterns


	BIND
	Classes and Subclasses
	EQUALS/NOT_EQUALS
	NUMERICAL RELATIONS
	ARITHMETIC OPERATORS
	AND, OR, NOT
	OR patterns
	Example 1
	Example 2
	Example 3

	QUANTIFIED PATTERNS
	Vacuously True Quantified Patterns
	BIND Patterns and the EXISTS Patterns
	Example 1
	Appendix D. Default Ontology Object Model (Printable)
	Appendix E. Agent Description (Printable)





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


