
AGENTBUILDER

An Integrated Toolkit for
Constructing Intelligent

Software Agents

User’s Guide

Version 1.4 Rev. 0

June 16, 2004

Acronymics, Inc.
1301 West 8th St., #28
Mesa, AZ 85201-3841

http://www.agentbuilder.com

Acronymics, Inc.
1301 West 8th St., #28
Mesa, AZ 85201-3841

(480) 615-8543
FAX: (480) 615-1297

http://www.acronymics.com
http://www.agentbuilder.com

© Copyright 2004 Acronymics, Inc.
All Rights Reserved

AgentBuilder® is a Registered Trademark of
Acronymics, Inc.

TABLE OF CONTENTS

AGENTBUILDER - 1-1

Introduction .. UM-1

CHAPTER 1 — INTRODUCTION ..UM-3
A AgentBuilder Features ..UM-4
B. AgentBuilder Development Tools ...UM-5
C. RunTime System..UM-7
D. Technical Support ..UM-8

Telephone...UM-8
Email Support ..UM-9

E. System Requirements...UM-10
Personal Computers ...UM-10

Windows 98/NT/2000 ..UM-10
Macintosh Support ..UM-10

UNIX Workstations ...UM-11
Solaris ...UM-11
Linux ...UM-11

 F. Using This Guide...UM-12
Style ...UM-12

G. If You Never Read Manuals... ...UM-13
H. Installation Instructions..UM-15
I. Product Family ..UM-16
3

4

AgentBuilder Lite ..UM-16
AgentBuilder Pro ...UM-17

J. Frequently Asked Questions (FAQ)..UM-18

Part I. Agents and Agent Development UM-21

CHAPTER 2 — INTRODUCTION TO AGENTS..UM-23
A Introduction to Intelligent Agents...UM-24

What are Intelligent Agents? ...UM-24
Why are They Important? ..UM-25
Why are They Difficult to Build? ..UM-26
AgentBuilder - a Toolkit for Agent Construction..................UM-27

B Characteristics of Intelligent Agents...UM-29
Intelligent Software Agents ...UM-29
What Isn’t An Agent..UM-32
Agent Classification...UM-33
Heterogeneous Agent Systems ..UM-36

C Intelligent Agent Architectures...UM-37
Background: Mentalistic Agents ..UM-37
Shoham’s Work ...UM-37
Agent Mental Models ..UM-38
Beliefs ..UM-38
Capabilities ..UM-39
Commitments...UM-40
Behavioral Rules..UM-41
Intentions ...UM-49
Agent Interpreter..UM-49
KQML..UM-52

CHAPTER 3 — AGENT COMMUNICATIONS LANGUAGESUM-55
A KQML...UM-56

KQML Language Description ...UM-56
Layer of Communication ..UM-56
KQML String Syntax ...UM-59
KQML Semantics ...UM-60
KQML Parameters ..UM-62
KQML Performatives ...UM-64

New Performatives .. UM-67
B KQML Conclusions ..UM-68

CHAPTER 4 — AGENT DEVELOPMENT PROCESS...................................UM-71
A The Process ...UM-72

Organize Project ..UM-73
Analyze Problem Domain..UM-75
Define Agency Architecture ..UM-75
Specify Agent Behavior...UM-76
Create Agent Application ..UM-77
Agent and Agency Debugging...UM-77

Part II. Getting Started with AgentBuilder UM-79

CHAPTER 5 — GETTING STARTED..UM-83
A Introduction...UM-84

Menus, Combo-Boxes and AccumulatorsUM-84
Building Complex Patterns with the Accumulator Paradigm UM-85
Variable Naming Conventions...UM-87

B Quick Tour ..UM-89
Ontology Manager ...UM-93

Object Modeler ...UM-95
5

6

Agent Manager ..UM-97
PAC Editor ...UM-102
Action Editor ..UM-105
Rule Editor ..UM-105
Running the HelloWorld Agent ..UM-108
On-Line Help ..UM-111
Overview of Typical Agent DevelopmentUM-112

CHAPTER 6 — BUILDING SIMPLE AGENTS - EXAMPLE AGENT 1UM-115
Step 1. Create Hello World Project and Agency.UM-116
Step 2. Creating the Hello World AgencyUM-117
Step 3. Create Your First Hello World AgentUM-119
Step 4. Create the Agent’s Behavioral Rules.......................UM-120

Step 4a. Start the Rule Editor ...UM-121
Step 4b. Create LHS Pattern ...UM-122
Step 4c. Create RHS Action ...UM-124
Step 5. Create the RADL file. ..UM-125
Step 6. Run the Agent. ..UM-126

CHAPTER 7 — A MORE COMPLEX AGENT (EXAMPLE AGENT 2)..........UM-131
Step 1. Copy Previous Agent ...UM-133
Step 2. Alter Rule to Run ContinuouslyUM-133

Step 2a. Open the Rule Editor with Hello Rule LoadedUM-133
Step 2b. Alter the LHS Pattern ...UM-134
Step 2c. Modify the RHS Elements ..UM-135

Step 3. Run the Agent ..UM-137
Step 4. Adding Rules to Change Agent BehaviorUM-138

Step 4a. Alter Hello rule’s RHS ...UM-139
Step 4b. Create new Quit rule’s LHSUM-140
Step 4c. Create the New Quit rule’s RHSUM-143

Step 5. Rerun Agent...UM-143

Step 6. Add Initial Objects. ..UM-146
Step 6a. Create Initial Objects ..UM-146
Step 6b. Alter the Hello rule’s RHS.UM-147
Step 6c. Alter the Quit rule’s LHS. ..UM-148

CHAPTER 8 — SIMPLE AGENT WITH A PACUM-151
Step 1. Create New Ontology ..UM-153
Step 2. Create a Hello Object in the Object ModelerUM-154
Step 3. Generate Java Template File for the Hello Class. ...UM-158
Step 4. Create new agent..UM-163
Step 5. Import Hello class into a HelloPACUM-163
Step 6. Create PAC Instance..UM-165
Step 7. Create Java Instance ..UM-166
Step 8. Create rules to utilize PACUM-166

Step 8a. Create Init rule. ...UM-167
Step 8b. Create Print Rule. ...UM-169
Step 8d. Create Quit rule. ...UM-171

Step 9. Run agent ...UM-172

CHAPTER 9 — AN AGENT WITH A GRAPHICAL PACUM-173
Step 1. Create appropriate ontologyUM-174
Step 2. Create New Agent..UM-176
Step 3. Define the PAC Instance ...UM-177
Step 4. Create Rules...UM-180

Step 4a. Create the BuildAndLaunchHelloWorldFrame rule. UM-181
Step 4b. Create the PrintGreeting Rule.UM-184

Step 5. Run the Agent ..UM-191

CHAPTER 10 — CREATING AGENTS THAT COMMUNICATEUM-193
7

8

Step 1. Create SimpleBuyerSeller OntologyUM-195
Step 2. Create SimpleSeller AgentUM-196
Step 3. Import PAC Object and create initial Java instance UM-197
Step 4. Create rules. ...UM-199

Step 4a. Create the WaitForIncomingMessage rule.UM-199
Step 4b. Create the RespondToIncomingMessage rule.UM-200

Step 5. Create SimpleBuyer agent.UM-205
Step 6. Import PAC Object. ...UM-205
Step 7. Create rules. ...UM-205

Step 7a. Create the CreatePriceQuote Rule.UM-205
Step 7b. Create the SendPriceRequestToStoreAgents rule. ...UM-206
Step 7c. Create the ReceivePriceQuotesFromStoreAgents rule. UM-207

Step 8. Run agents. ..UM-208

CHAPTER 11 — AGENTS THAT COMMUNICATE WITH CORBAUM-215
Step 1. Create CORBA Compatible PAC(s)UM-217
Step 2. Create SimpleBuyerSeller OntologyUM-217
Step 3. Create SimpleSeller AgentUM-218
Step 4. Import PAC Object and create initial Java instance UM-220
Step 5. Create rules. ...UM-220

Step 5a. Create the WaitForIncomingMessage rule.UM-221
Step 5b. Create the RespondToIncomingMessage rule.UM-223

Step 6. Create SimpleBuyer agent.UM-227
Step 7. Import PAC Object. ...UM-227
Step 8. Create rules. ...UM-228

Step 8a. Create Price Quote rule. ..UM-228
Step 8b. Create Send price request to store agents rule.UM-228
Step 8c. Create Receive price quotes from store agents rule. UM-229

Step 9. Modify Agency Communications............................UM-231
Step 10. Modify Agent Communication..............................UM-232

Step 11. Run the Nameserver ..UM-233
Step 12. Run agents. ..UM-234

CHAPTER 12 — CREATING AND RUNNING AGENTS USING PROTOCOLSUM-239
Step 1. Create the BuyerSellerWithProtocol agency.UM-242
Step 2. Create the SimpleBuyer2 and SimpleSeller2 agents.UM-242
Step 3. Copy or create the Simple Buyer Seller Ontology from the
system repository. ..UM-242
 Step 4. Create the SimpleBuyerSellerProtocol with the Protocol Editor.
UM-242

Step 4a. Create the two roles. ..UM-244
Step 4b. Create the three states. ..UM-245
Step 4c. Create the Request_Quote TransitionUM-247
Step 4d. Create the Price_Quote_Reply transitionUM-249

Step 5. Import the protocol into the SimpleBuyerSellerWithProtocol
agency. ...UM-250
Step 6. Finish the agents ..UM-252
Step 7. Run the agents in the Agency Viewer.UM-256

Appendices .. UM-267

CHAPTER 13 — RUNNING AGENTS OUTSIDE THE AGENTBUILDER ENVIRONMENT
UM-271

A Running Agents in the Windows Environment ..UM-272
Step 1. Create File Folder ..UM-272
Step 2. Copy AgentBuilder JRE DirectoryUM-273
Step 3. Copy AgentBuilder lib FolderUM-273
Step 4. Copy Agent RADL File(s).......................................UM-273
Step 5. Copy Class Files ..UM-273
Step 6. Modify Engine Batch FileUM-273
9

10
A. Edit the Batch File ...UM-274
B. Modify the Classpath ...UM-274
C. Replace the Main Class File ..UM-274
D. Append RADL File Name ...UM-275
E. Add AgentEngine Options ...UM-275

Step 7. Test the Agent..UM-275
B Running Agents in the UNIX Environment..UM-276

Step 1. Create Directory...UM-276
Step 2. Copy Directories and FilesUM-276
Step 3. Copy RADL File..UM-276
Step 4. Copy PAC Class Files ...UM-277
Step 5 Create a Script File ...UM-278

A. Create the Script File ...UM-278
Step 6. Test the Agent Script ...UM-279

 Appendix A. KQML Performatives.. UM-281
Basic Informative Performatives ...UM-281
Database Performatives ...UM-282
Basic Responses...UM-285
Basic Query Performatives ..UM-286
Multi-Response Query PerformativesUM-287
Basic Effector Performatives ...UM-288
Generator Performatives ..UM-289
Capability-Definition Performatives....................................UM-290
Notification Performatives...UM-291
Networking Performatives ...UM-291
Facilitation Performatives..UM-293

 Appendix B. Bibliography ... UM-297

LIST OF F IGURES

Figure 1 . AgentBuilder Tools ...UM-6
Figure 1 . AgentBuilder Tools ...UM-6
Figure 2 . Agent Typology..UM-34
Figure 3 . An Agent’s Mental Model (Beliefs)..UM-44
Figure 4 . An Example Rule ..UM-45
Figure 5 . Agent Execution Process..UM-50
Figure 6 . The Three Layers of the KQML Language................................UM-57
Figure 7 . KQML String Syntax in BNF ..UM-61
Figure 8 . Constructing Intelligent Agents ..UM-74
Figure 9 . Accumulator Building Complex PatternsUM-86
Figure 10 . The AgentBuilder Project Manager ..UM-90
Figure 11 . The Ontology Manager ...UM-93
Figure 12 . The Ontology Properties Panel ...UM-94
Figure 13 . Object Modeler..UM-95
Figure 14 . Class Properties for the Agent Class ...UM-96
Figure 15 . The Agent Manager...UM-98
Figure 16 . Agent Properties..UM-99
Figure 17 . Agent Manager Rule Panel ...UM-101
Figure 18 . The PAC Editor...UM-103
Figure 19 . The PAC Instance Editor...UM-104
Figure 20 . Action Editor ...UM-106
Figure 21 . Rule Editor Showing LHS of the Print Greeting RuleUM-107
Figure 22 . Rule Editor Showing RHS of Print Greeting Rule..................UM-108
Figure 23 . AgentBuilder RADL File Listing..UM-109
Figure 23 . AgentBuilder RADL File Listing..UM-109
Figure 24 . The Agent Engine Launcher Dialog..UM-111
Figure 25 . AgentBuilder Engine Console and HelloWorld Frame...........UM-112
Figure 26 . AgentBuilder Help Viewer..UM-113
Figure 27 . Project Manager Window..UM-117
Figure 28 . Project Properties Dialog ..UM-118
11

12
Figure 29 . Agency Properties Dialog ...UM-118
Figure 30 . Agent Properties Dialog ..UM-119
Figure 31 . Project Manager Window..UM-120
Figure 32 . Agent Manager Window for the ExampleAgent1...................UM-121
Figure 33 . Rule Editor for ExampleAgent1..UM-122
Figure 34 . The Rule Properties Dialog ...UM-123
Figure 35 . Instance Dialog..UM-124
Figure 36 . Values Dialog..UM-125
Figure 37 . Rule Editor Window After Entering RHS InformationUM-126
Figure 38 . File Dialog for Saving RADL File..UM-127
Figure 39 . Agent Engine Options Window ..UM-128
Figure 40 . Agent Engine Console Window in Verbose ModeUM-129
Figure 41 . Agent Engine Console Window in Non-Verbose Mode.........UM-130
Figure 42 . Copying Agents in the Project ManagerUM-134
Figure 43 . Rule Editor Window After Modifying LHSUM-136
Figure 44 . Rule Editor Window After Modifying RHSUM-138
Figure 45 . Agent Engine Console Window for Modified Agent..............UM-139
Figure 46 . Rule Editor Window with Added AssertionUM-140
Figure 47 . New Variable Dialog...UM-142
Figure 48 . Defined Variable Dialog ...UM-143
Figure 49 . Viewing Rules Using Agent ManagerUM-144
Figure 50 . Running the Agent ..UM-145
Figure 52 . PAC Editor with Two Java Instances......................................UM-148
Figure 53 . Rule Editor Showing Hello Rule RHS....................................UM-149
Figure 54 . Rule Editor ..UM-150
Figure 55 . Creating a New Ontology..UM-154
Figure 56 . Ontology Properties for Quick Tour OntologyUM-155
Figure 57 . Class Properties for the Hello Class..UM-156
Figure 58 . Object Properties Dialog for Hello Class................................UM-158
Figure 59 . Object Modeler After Defining Hello ClassUM-159
Figure 60 . Export Dialog ..UM-160
Figure 61 . Directory Dialog for Automatically Generated Java Files......UM-160
Figure 62 . Hello.java Code Listing as ModifiedUM-162
Figure 63 . Agent Properties..UM-163
Figure 64 . Import Dialog ..UM-164
Figure 65 . PAC Editor ..UM-165
Figure 66 . PAC Editor ..UM-167
Figure 67 . Creation of Hello Object in New Object DialogUM-169
Figure 68 . Init Rule in Agent Manager...UM-170
Figure 69 . Print Rule in Agent Manager ..UM-171

Figure 70 . A Graphical User Interface for an AgentUM-174
Figure 71 . Class Import Dialog ..UM-176
Figure 72 . Object Properties Dialog ...UM-177
Figure 73 . Communications Dialog..UM-178
Figure 74 . Import Dialog ..UM-179
Figure 75 . PAC Editor for HelloWorld ..UM-180
Figure 76 . New Object Dialog..UM-182
Figure 77 . Instances Dialog ..UM-183
Figure 78 . Agent Manager Showing the Build HelloWorldFrame Rule ..UM-185
Figure 79 . New Message Variable Dialog..UM-186
Figure 80 . The Binding Dialog...UM-187
Figure 81 . Defined Message Variables...UM-187
Figure 82 . Message Properties..UM-188
Figure 83 . Rule Editor Showing Print Greeting Rule LHSUM-189
Figure 84 . Agent Manager Showing the Quit RuleUM-191
Figure 85 . Simple Buyer/Seller Ontology ..UM-196
Figure 86 . Simple Seller Communications DialogUM-197
Figure 87 . Simple Seller Import Dialog ...UM-198
Figure 88 . Simple Seller PAC Editor ...UM-199
Figure 89 . Simple Seller New Variable Dialog ..UM-201
Figure 90 . Simple Seller Rule Editor..UM-202
Figure 91 . Simple Seller Rules ...UM-204
Figure 92 . The SendPriceRequestToStoreAgents Rule............................UM-207
Figure 93 . The ReceivePriceQuotesFromStoreAgents rule......................UM-209
Figure 94 . SimpleSeller Agent Console ...UM-210
Figure 95 . SimpleBuyer Agent Console...UM-211
Figure 96 . The Modified SimpleBuyer Rule ..UM-213
Figure 97 . Simple Buyer/Seller Ontology ..UM-218
Figure 98 . Simple Seller Communications DialogUM-219
Figure 99 . Simple Seller Import Dialog ...UM-221
Figure 100 . Simple Seller PAC Editor ...UM-222
Figure 101 . Simple Seller New Variable DialogUM-224
Figure 102 . Simple Seller Rule Editor..UM-225
Figure 103 . Simple Seller Rules ...UM-227
Figure 104 . The Send price request to store agents RuleUM-230
Figure 105 . The Receive price quotes from store agents ruleUM-231
Figure 106 . Communications Dialog for CORBA Buyer SellerUM-232
Figure 107 . Simple Buyer Communications DialogUM-233
Figure 108 . Running the Transient Name ServerUM-234
Figure 109 . Simple Seller Agent Console ..UM-236
13

14
Figure 110 . Simple Buyer Agent Console..UM-237
Figure 111 . Project Manager View...UM-243
Figure 112 . The Protocol Manager...UM-244
Figure 113 . Buyer Seller Roles Dialog...UM-246
Figure 114 . State Properties Dialog..UM-246
Figure 115 . The Protocol Editor ...UM-247
Figure 116 . Price Request Transition Dialog ...UM-249
Figure 117 . The Transition Properties Dialog ..UM-250
Figure 118 . The Assign Agents Dialog ..UM-251
Figure 119 . Role Editor ..UM-252
Figure 120 . SimpleBuyer2 Skeletal Rules..UM-254
Figure 121 . Completed SimpleBuyer2 Rule...UM-255
Figure 122 . Handler Rules for Simple Buyer ...UM-256
Figure 123 . PriceRequest Message Rule for Simple BuyerUM-257
Figure 124 . SimpleSeller Rules ..UM-258
Figure 125 . The Price_Request Message Handler RuleUM-259
Figure 126 . Agency Viewer with Buyer Seller AgentsUM-261
Figure 127 . Simple Buyer Console...UM-263
Figure 128 . Simple Seller Console ...UM-264
Figure 129 . SimpleBuyer Messages ...UM-265
Figure 130 . Windows Directory Structure..UM-274
Figure 131 . UNIX Directory Structure...UM-277
Figure 132 . UNIX Agent Script..UM-278

LIST OF TABLES

Table 1. Checking out AgentBuilder ..UM-13
Table 2. Attributes of an Intelligent Agent ...UM-31
Table 3. Summary of Reserved Performatives ...UM-53
Table 4. Summary of Reserved Parameter Keywords and their Meanings UM-64
Table 5. Summary of Reserved Performatives ...UM-65
Table 6. Building the Hello World Agent ..UM-116
Table 7. Creating Agents by Modifying BehaviorUM-132
Table 8. Rule Creation (in Mental Conditions) ..UM-146
Table 9. Simple Agent Using PAC ..UM-153
Table 10. Creating an Agent with Graphical Interface PACUM-175
Table 11. Creating Two Agents that Communicate with Each OtherUM-194
Table 12. Creating Two Agents that Communicate with Each OtherUM-216
Table 13. Creating Two Agents with Protocols ..UM-241
Table 14. Agency Viewer Colors ...UM-260
15

16

Introduction
 – 1

 – 2

Chapter 1: Introduction

1 – 3
C h a p t e r 1

Introduction

Chapter Overview

You can find the following information
in this chapter:

• AgentBuilder Features
• AgentBuilder Development Tools
• RunTime System
• Technical Support
• System Requirements
• Using This Guide
• If You Never Read Manuals...
• Installation Instructions
• Product Family
• Frequently Asked Questions (FAQ)

Chapter 1: Introduction
A. AgentBuilder Features
AgentBuilder:

• Makes it easy to create intelligent software agents
• Requires no special expertise in intelligent agent technology or

network communications
• Constructs agents with built-in capabilities for autonomous

operation, monitoring their environments, reasoning, and com-
municating with other agents and users

• Provides a suite of graphical programming tools for specifying
agent behavior and operation

• Utilizes a high-level, agent-oriented programming language;
programming is accomplished by specifying intuitive concepts
such as beliefs, commitments, and actions

• Provides tools for analyzing the problem domain
• Provides tools for defining agencies—collections of intelligent

agents
• Provides tools for defining interaction between agents; i.e.,

agent protocols
• Provides tools for testing and debugging agents and agencies
• Is a Java-based, cross-platform toolkit for creating cross-plat-

form, agent-based applications; creates agents that are Java pro-
grams

• Supports easy integration and use of existing software libraries
(Java, C and C++)
1 – 4

Chapter 1: Introduction
B. AgentBuilder Development Tools
AgentBuilder provides graphical tools for supporting all phases of
the agent construction process. Programming software agents
(sometimes called Agent-Oriented Programming) is accomplished
by specifying intuitive concepts such as the beliefs, commitments,
and actions of the agent.

AgentBuilder provides a comprehensive set of tools for program-
ming software agents. Figure 1 illustrates the use of some of these
tools.

AgentBuilder provides tools for:

• Organizing and controlling the development project
• Analyzing the problem domain
• Specifying interaction protocols
• Defining the agency architecture
• Examining running agencies
• Specifying agent behavior
• Creating run-time executable agents
• Viewing and debugging agents

Project Accessory Classes (PACs) contain the problem-specific
code that each agent requires for its operation. For example, a data-
base agent might have a PAC for performing SQL queries. PACs
can be made up of classes and packages from a variety of sources
including legacy and off-the shelf software. PACs can be coded in
Java, C or C++.
1 – 5

Chapter 1: Introduction
Figure 1. AgentBuilder Tools
1 – 6

Chapter 1: Introduction
C. RunTime System
The run-time system consists of the agent program and the run-time
agent engine. The agent program is a combination of the agent def-
inition and the private action library (i.e., agent actions and user
interface libraries). The agent program is executed by the run-time
agent engine; the combination of the agent program and the agent
engine create an executable agent.
1 – 7

Chapter 1: Introduction
D. Technical Support
Acronymics, Inc. is committed to providing prompt technical sup-
port. If the answer to your problem can't be found in the User's
Guide, the built-in help system, or the documentation found at
www.agentbuilder.com/Documentation, our technical support
staff will be glad to assist you.

There are two avenues by which you can reach technical support:

• Telephone
• Email

The type of support to which you are entitled depends upon your
version of AgentBuilder. When requesting technical support have
the following information available:

• Your license number or invoice number and version of the soft-
ware.

• Description of your problem: What occurs and when, how
severe the problem is, what error messages appear on your
screen, and anything else of relevance.

• The error log generated by the program.
• A profile of your computer (manufacturer, model, and hard-

ware).

Telephone
To schedule telephone support, please send an email to

informationAgent@agentbuilder.com with Subject: support.

We will contact you and schedule a support call for you. Telephone
support is available on a scheduled basic only to AgentBuilder Pro
users. Please be at the computer with AgentBuilder installed when
1 – 8

Chapter 1: Introduction
you talk to a support engineer. Please try to resolve your probem by
email before using telephone support.

Email Support
Email support is available to all AgentBuilder users by emailing
your question to:

support@agentbuilder.com.

Other Support
A list of Frequently Asked Questions is also maintained. Go to the
AgentBuilder website at http://www.agentbuilder.com/Documenta-
tion/FAQ.html to review the FAQ.
1 – 9

Chapter 1: Introduction
E. System Requirements
This section provides the information required to install and famil-
iarize yourself with AgentBuilder. Please check that your computer
system has the hardware and software installed that is required for
running AgentBuilder. Install the AgentBuilder software and
explore the software using the Quick Tour of AgentBuilder.

AgentBuilder only requires a Java development environment for
developing user-defined classes (PACs). The Java development
environment must be compliant with at least the Java 1.1.8 API.The
current version supports Java 1.3. Java 1.1.8 is required for LINUX
and Macintosh support. Only the user-defined classes and the
AgentBuilder libraries are required for runtime execution of agents.

AgentBuilder is distributed with the JRE (Java Runtime Environ-
ment) for each supported platform. A Java virtual machine is
included with the JRE. Both the AgentBuilder Toolkit and the Run-
Time System execute on this Java Virtual Machine.

Personal Computers
Windows 98/NT/2000
The operating system requirements are Windows 98, Windows
2000 or Windows NT. The minimum recommended hardware is a
Pentium 200 MHz with a minimum of 32 MB of RAM. A 300 MHz
machine with 128K of memory is highly recommended.

Macintosh Support
AgentBuilder is not “officially” supported on the Macintosh plat-
form with this release. However, with some limitations, Agent-
Builder can be used on the Macintosh.

The minimum requirements for running a JVM on the Macintosh
are: (see http:/developer.apple.com/java/download.htm):
1 – 10

Chapter 1: Introduction
• 64 M of memory
• Macintosh with PowerPC Processor
• Mac OSX
• At least 13 M of free disk space.

UNIX Workstations
Currently Solaris and LINUX are supported. Other UNIX platforms
can be supported if the appropriate JREs is available. Please contact
support@agentbuilder.com for information for support on addi-
tional platforms.

Solaris
Only Solaris 2.5.1 or higher is supported. The recommended hard-
ware is a SUN SPARC or higher with 64 MB or RAM.

Linux
The i386 LINUX port is the only supported platform. The recom-
mended minimum hardware requirement is a Pentium 200 MHz
with 32 MB of RAM. The following libraries will also need to be
installed.

• glibc-2.0.7-7
• glibc-devel-2.0.7-7
• libc.so.5.44 or greater
• recent version of ld.so
1 – 11

Chapter 1: Introduction
 F. Using This Guide

Style
Information you enter into the computer is indicated with a Courier
Oblique type font:
this is stuff you Type

Computer generated responses and the names of icons, dialogs,
files and directories are indicated using an Helvetica bold font:
The Computer Said This; Agents File

RADL listings are also printed in the Helvetica font:

A Sample RADL Code Listing

Code snippets are indicated in a Courier font:
this is a code snippet(for you);

Button Labels, Menu Bars and Menu Items are indicated using a
Helvetica Bold font:

Menu Item or Cancel

Menu items in a menu bar are indicated by:

Menu Bar Item Menu Item1 Menu Item Level 2

This means that for the Menu Bar Item, the Menu Item 1 (a hierar-
chical menu) is selected with sub-item Menu Item Level 2.
1 – 12

Chapter 1: Introduction
G. If You Never Read Manuals...
...that's okay with us. If you've never built an intelligent agent and
are not familiar with software development, its highly recom-
mended that you first read and work through “Part II. Getting
Started with AgentBuilder.” You shoud also review the Reference
sections of the documentation. If the compulsion to sit down and
start working with the tool is overwhelming then you need to at
least make sure everything is properly installed.

Table 1. Checking out AgentBuilder

 Do this Comments

1. If AgentBuilder isn't
already installed on your
computer, follow the
steps in “Installation
Instructions” on page 15
to properly install the
system.

2. Start the program. For UNIX users, at the UNIX
prompt type the command
AgentBuilder.

For Microsoft Windows users,
choose the AgentBuilder pro-
gram icon from the programs
menu.

In either case if a window
appears that is titled Project
Manager then the program has
successfully been launched.
1 – 13

Chapter 1: Introduction
3. To get started, double
click the System Reposi-
tory icon

4. double click the Exam-
ple Project icon

5. double click the Hello
World Agency icon

Now you should see two icons
that represent two agents.

6. Click on the HelloWorld
icon and choose the
Agent Manager from the
tools menu

This brings up the tools for pro-
gramming individual agents. By
choosing different tabs, you will
see the various components
that make up the HelloWorld
agent. By double clicking on
any of the components in the
middle panel, the editor for that
component is started

7. Have Fun

Table 1. Checking out AgentBuilder

 Do this Comments
1 – 14

Chapter 1: Introduction
H. Installation Instructions
Before installing the AgentBuilder tools, ensure that you have the
most recent version of the software and the README file for that
version. Follow the detailed instructions in the README for
installation. The latest versions are available from the Agent-
Builder web site. When downloading the software make sure to
choose the version appropriate for the platform being used.
1 – 15

Chapter 1: Introduction
I. Product Family
The AgentBuilder product family1 includes two different products.
AgentBuilder Lite is ideally suited for developing single-agent,
stand-alone applications. The low cost of AgentBuilder Lite also
makes it ideal for software developers who are investigating intelli-
gent agent technology or building their first agent applications.
AgentBuilder Pro supports development of networks of communi-
cating agents and agents and includes sophisticated tools for build-
ing and running multi-agent systems.

Acronymics, Inc. also offers a variety of software maintenance and
support services, consulting services, and custom software develop-
ment.

AgentBuilder Lite
AgentBuilder Lite is the entry level product for intelligent agent
software developers. AgentBuilder Lite provides tools for con-
structing single-agent, stand-alone applications. AgentBuilder Lite
includes licenses for:

• Project control tools including Project Manager and Project
Dictionary tools.

• Ontology Manager including concept mapping and object mod-
eling tools

• Agent Manager tools for creating RADL-based agent programs
• Agent Console with capability to view and control a single

agent
• Run-Time Engine†

1. The product descriptions and specifications provided here are subject to
change without notice.
1 – 16

Chapter 1: Introduction
• Support through AgentBuilder Web site access and mailing list
membership

• Sample ontological libraries
• Single-user license
Academic versions of AgentBuilder Lite are available to accredited
universities.
† Each agent engine requires a separate run-time license.

AgentBuilder Pro
AgentBuilder Pro includes all of the tools of AgentBuilder Lite
with the addition of the following:

• Agency Manager including tools for creating and managing
multiple intelligent software agents. This includes the agency
viewer tools for examining remote agent operation and protocol
editors for specifying interagent protocols

• Multi-agent debugger support
• Support for optional learning and planning modules
• Single-user license
• Email and limited FAX and telephone support
Academic versions of AgentBuilder™ Pro are available to accred-
ited universities.
1 – 17

Chapter 1: Introduction
J. Frequently Asked Questions (FAQ)
We’ll be adding to this list as we receive questions, comments and
feedback. :

Q How do I get the latest FAQ?
A Go to the AgentBuilder website at http://www.agent-

builder.com/Documentation/FAQ.html

Q What is AgentBuilder?
A AgentBuilder is an integrated tool suite for constructing

intelligent software agents. AgentBuilder consists of two
major components - the Toolkit and the Run-Time Sys-
tem. The AgentBuilder Toolkit includes tools for manag-
ing the agent-based software development process,
analyzing the domain of agent operations, designing
and developing networks of communicating agents,
defining behaviors of individual agents, and debugging
and testing agent software. The Run-Time System
includes an agent engine that provides an environment
for execution of agent software. For more detailed infor-
mation, see the product description and our white paper
at http://www.agentbuilder.com

Q What platforms does AgentBuilder support?
A AgentBuilder requires a Java Virtual Machine capable

of executing Java 1.2.x. AgentBuilder will work on any
platform with this capability. AgentBuilder Lite has been
tested on Solaris, Windows NT, Windows 2000, Win-
dows XP and Linux platforms. Installation programs are
available for Windows, Linux and Solaris. Acronymics
does not provide installation programs for other plat-
forms.
1 – 18

Chapter 1: Introduction
Q Can I build multiple agents using AgentBuilder
Lite?

A Yes! AgentBuilder Lite is capable of building multiple
agents. In fact, this User's Guide describes building a
multi-agent system for electronic commerce - a simple
shopping agent with two storefront agents (see Chapter
10). AgentBuilder Pro, however, has more sophisticated
tools for multiple agent development.

Q How much does AgentBuilder cost?
A A current price list is available on the AgentBuilder web-

site. You may also place your order online using our
secure server. If you have any questions, please con-
tact AgentBuilder Sales at (480) 615-8543 or via email:
informationAgent@agentbuilder.com with Subject:
sales.

Q Is there an evaluation copy of AgentBuilder avail-
able?

A Evaluation copies of AgentBuilder Pro are available.
There are no evaluation copies for AgentBuilder Lite.
This User's Guide and a Reference Manual are avail-
able for download. In addition, for the academic com-
munity, we have special discounted pricing.

Q If I buy AgentBuilder Lite now, are there any special
price discounts for purchasing the Pro version?

A We do have a special pricing plan that allows the cost of
an AgentBuilder Lite license to be applied towards the
purchase of an AgentBuilder Pro license (Note: This
does not apply to academic versions). For additional
information, please contact AgentBuilder Sales at infor-
1 – 19

Chapter 1: Introduction
mationAgent@agentbuilder.com Subject: pricing or call
(480) 615-8543.

Q Do you have distributors in countries other than the
U.S.?

A Yes, on a limited basis. Please contact us directly for
details. We are making all distributions available elec-
tronically. However, we do ship CD-ROMs and printed
manuals worldwide.
1 – 20

Part I. Agents and
Agent

Development
 – 21

 – 22

Chapter 2: Introduction to Agents

2 – 23
C h a p t e r 2

Introduction to Agents

Chapter Overview

You can find the following information in
this chapter:

• Introduction to Intelligent Agents
• Characteristics of Intelligent Agents
• Intelligent Agent Architectures

Chapter 2: Introduction to Agents
A. Introduction to Intelligent Agents

What are Intelligent Agents?
The concept of an intelligent software agent has captured the popu-
lar imagination. People like the idea of delegating complex tasks to
software agents. These agents can make airline reservations, order
books from an on-line store, find out about the latest song from a
favorite musician, or monitor stock portfolios. Software agents can
roam the Internet to locate information for us. Sophisticated soft-
ware agents can negotiate the purchase of raw materials for a fac-
tory, schedule factory production, negotiate delivery schedules with
a customer’s software agent, or automate the billing process. How-
ever, developing intelligent agents requires specialized knowledge
and can be difficult, time-consuming, and error-prone. New tools
are needed to make it easier for software developers to build these
sophisticated software agents.

Intelligent software agents are a new class of software that act on
behalf of the user to find and filter information, negotiate for ser-
vices, easily automate complex tasks, or collaborate with other soft-
ware agents to solve complex problems. Software agents are a
powerful abstraction for visualizing and structuring complex soft-
ware. Procedures, functions, methods, and objects are familiar
software abstractions that software developers use every day. Soft-
ware agents, however, are a fundamentally new paradigm unfamil-
iar to many software developers.

The central idea underlying software agents is that of delegation.
The owner or user of a software agent delegates a task to the agent
and the agent autonomously performs that task on behalf of the
user. The agent must be able to communicate with the user to
receive its instructions and provide the user with the results of its
activities. Finally, an agent must be able to monitor the state of its
2 – 24

Chapter 2: Introduction to Agents
own execution environment and make the decisions necessary for it
to carry out its delegated tasks.

There are two approaches to building agent-based systems: the
developer can utilize a single stand-alone agent or implement a multi-
agent system. A stand-alone agent communicates only with the user
and provides all of the functionality required to implement an agent-
based program. Multi-agent systems are computational systems in
which several agents cooperate to achieve some task that would oth-
erwise be difficult or impossible for a single agent to achieve. We
term these multi-agent systems agencies. Agents within an agency
communicate, cooperate, and negotiate with each other to find a solu-
tion to a particular problem.

Why are They Important?
Every day, software developers are tasked with constructing ever
larger and more complex software applications. Developers are now
building enterprise-wide and global applications that must operate
across corporations and continents. More and more corporations
need to integrate their information systems with those of their suppli-
ers and customers. New systems must link multiple organizations
and multiple application platforms into a unified information man-
agement system that uses the World Wide Web and distributed object
technologies.

Next-generation systems must provide global connectivity through a
variety of internets and intranets. Users of these systems will include
office and factory workers, suppliers, mobile workers, workgroups,
customers, and remote workers. Application platforms will vary
from desktop personal computers to large multiprocessor main-
frames. The kinds of applications that must communicate and oper-
ate with each other will vary in complexity from programs as simple
2 – 25

Chapter 2: Introduction to Agents
as Intuit’s Quicken to complex enterprise applications such as
SAP’s R/3.

Developing applications for these existing and emerging applica-
tion domains requires powerful new methods and techniques for
conceptualizing and implementing software systems. Intelligent
software agents provide a powerful problem-solving paradigm that
is well-suited to developing complex enterprise applications.

Why are They Difficult to Build?
Agents and agent technology have been an active area of research
in the artificial intelligence and computer science community for a
number of years. Many universities have developed intelligent
software agents. A number of companies deliver software agents
capable of performing a wide variety of specialized tasks. How-
ever, each of these agents had to be handcrafted for a particular
application. Building an intelligent software agent is a difficult and
time-consuming task that requires an understanding of advanced
technologies such as knowledge representation, inferencing, net-
work communications methods and protocols, etc. Sophisticated
applications often require expertise in machine learning and
machine planning technology.

A developer using intelligent agents in a new application must
decide on the overall agent processing architecture, the agent’s rea-
soning (inferencing) mechanism and associated pattern matching
technology, internal knowledge and data representations, agent-to-
agent communications protocols and message formats. In addition,
if the agent is to learn from its environment or its owner then some
kind of machine learning technology will be required. Sophisti-
cated agents may require a planning capability which will require
that the developer select a planning algorithm and implementation.
If the application requires multiple communicating agents then the
2 – 26

Chapter 2: Introduction to Agents
developer needs to establish a robust communications protocol
between the agents. This will require that the developer have knowl-
edge and expertise in the underlying communications technologies
used for interagent communications.

AgentBuilder - a Toolkit for Agent Construction
Software developers need a set of tools that will aid them in develop-
ing agent-based applications. Tools are needed that can help the soft-
ware developer analyze the application domain; formally recognize
and describe the concepts, relationships, and objects relevant to that
domain; and specify the behavior of the agent(s) operating in the
domain. The software developer also needs tools that can specify a
collection of agents, analyze and specify the messages and message
protocols between agents, and execute and evaluate the actions of the
agents. The AgentBuilder Toolkit which provides these capabilities.

The AgentBuilder product consists of two major components: the
development tools and the run-time execution environment. The
development tools are used for analyzing an agent’s problem domain
and for creating an agent program that specifies agent behavior. The
run-time system provides a high-performance agent engine that exe-
cutes these agent programs.

Agents constructed using AgentBuilder communicate using the
Knowledge Query and Manipulation Language (KQML) [Finin, et al,
1994a; Finin, et al, 1994b; Finin, et al, 1994c; Labrou et al, 1994;
Labrou, 1996] and support the performatives defined for KQML
(described later in this paper). In addition, AgentBuilder allows the
developer to define new interagent communications commands that
suit his particular needs.

The AgentBuilder toolkit and the run-time engine are implemented
using the Java programming language. Thus, AgentBuilder will run
on any platform that supports Java development. Agents created with
2 – 27

Chapter 2: Introduction to Agents
AgentBuilder are themselves Java programs and will execute on
any platform with a Java virtual machine.

 AgentBuilder allows software developers with no background in
intelligent systems or intelligent agent technologies to quickly and
easily build intelligent agent-based applications. AgentBuilder
reduces development time and development cost and simplifies the
development of high-performance, robust, agent-based systems.
2 – 28

Chapter 2: Introduction to Agents
B. Characteristics of Intelligent Agents

Intelligent Software Agents
Before defining the characteristics of an intelligent agent we first
look at the general characteristics of a software agent. A software
agent is viewed as an autonomous software construction; i.e., one
that is capable of executing without user intervention.

We place two additional constraints on the software before defining
such a construct as a software agent: an agent must have the ability to
communicate with other software or human agents and the ability to
perceive and monitor the environment. The ability to communicate
implies that the agent has the ability to cooperate with other agents
(after all, cooperation is required in order to receive and acknowledge
a communication). Cooperation is of paramount importance and is
the primary reason for using multiple agents in a software architec-
ture. Wooldridge and Jennings argue that this cooperation implies a
social ability to interact with other agents (or humans) [Wooldridge
& Jennings, 1995]. Other researchers use much less rigorous defini-
tions for an agent. Some require only the capability for autonomous
operations [Franklin & Graesser, 1996]. Others such as Russell and
Norvig insist on the capability to perceive and affect the environment
[Russell & Norvig, 1995]. Smith, et al [Smith, Cypher, & Spherer,
1994] view an agent as a persistent software entity dedicated to a spe-
cific purpose. We define a software agent as a software component
that:

• executes autonomously
• communicates with other agents or the user
• monitors the state of its execution environment

Having defined the general characteristics of a software agent, we
can begin to address the question of what makes a software agent an
2 – 29

Chapter 2: Introduction to Agents
intelligent software agent — this means that we must address the
broader question of what is meant by the term intelligent software.
It is certainly beyond the scope of this document to argue the defi-
nition of intelligent software. (The interested reader should consult
one of the many texts on artificial intelligence such as [Rich, 1983]
or [Russell & Norvig, 1995].) Newell argues that for software to
be considered intelligent it should possess the following capabili-
ties or attributes [Newell, 1988]:

• Able to exploit significant amounts of domain knowledge
• Tolerant of errorful, unexpected, or wrong input
• Able to use symbols and abstractions
• Capable of adaptive, goal-oriented behavior
• Able to learn from the environment
• Capable of operation in real-time
• Able to communicate using natural language

A strong argument can be made that an intelligent software agent
need not have all of the capabilities and attributes described above.
For example, many applications do not require a real-time
response, merely a timely response. Other applications involve
only agent-to-agent interaction and thus do not require the ability to
communicate using natural language. Numerous researchers have
shown that highly capable intelligent agents can be constructed
without having a learning capability. Hayes-Roth views intelligent
agents as necessarily having the capability to perform three func-
tions:

• Perceive dynamic conditions in the environment
• Take action to affect conditions in the environment
• Reason to interpret perceptions, solve problems, draw infer-

ences, and determine actions [Hayes-Roth, 1995]
2 – 30

Chapter 2: Introduction to Agents
IBM researchers define intelligent agents as:
“software entities that carry out some set of operations on behalf of a user
with some autonomy and employ either knowledge or representation of the
user’s goals and desires” [Gilbert et al, 1996].

Wooldridge and Jennings [Wooldridge & Jennings, 1995] not only
require autonomy, perception and reactivity but further expand the
definition to include proactivity (i.e., agents must not simply act in
response to the environment, they must be able to exhibit goal-
directed behavior by taking initiative). Nwana argues that for an
agent to be considered “smart” it must be able to learn as it reacts
and/or interacts with its external environment. Learning can take the
form of improved performance by the agent over time as it performs
various tasks [(Nwana, 1996].

Table 2. Attributes of an Intelligent Agent

Executes autonomously

Agent Communicates with other agents or the user

Monitors the state of its execution environ-
ment

Able to use symbols and abstractions

Intelligent
Agent

Able to exploit significant amounts of
domain knowledge

Capable of adaptive goal-oriented behavior

Able to learn from the environment

Truly
Intelligent
Agent

Tolerant of errorful, unexpected, or wrong
input

Capable of operation in real-time

Able to communicate using natural lan-
guage
2 – 31

Chapter 2: Introduction to Agents
Truly intelligent agent software will thus possess the capabilities of
agent software (autonomy, communicability, perception) and the
capabilities of intelligent software (ability to exploit knowledge and
tolerate errors, reason with symbols, learn and reason in real time,
and communicate in an appropriate language). Thus it seems clear
that intelligent agent software should not be viewed as being either
“smart” or “dumb” but, rather, should be viewed as having intellec-
tual capabilities lying along a continuum. Software with more
intelligence will have greater capabilities. In certain applications,
intelligent agents with limited capabilities will be all that is
required. Minsky argues that large networks of very simple com-
municating and cooperating agents each performing only simple
actions may be all that is required for intelligent processing [Min-
sky, 1985].

It should be pointed out that a software component possessing only
some of these capabilities can hardly be considered an intelligent
agent. For example, an expert system is typically able to exploit
knowledge, use symbols and abstractions and is capable of goal-
oriented behavior. However, expert systems generally can’t exe-
cute autonomously, learn, or communicate and cooperate with
other agents. Thus, in most cases, we do not consider them intelli-
gent agents.

What Isn’t An Agent

Intelligent agent technology has been the victim of hyperbole and
exaggeration. Patti Maes notes that current commercially available
agents barely justify the name agent yet alone the adjective intelli-
gent [Maes, 1995)]. MIT researcher Foner argues:

“... I find little justification for most of the commercial offerings that
call themselves agents. Most of them tend to excessively anthropomor-
phize the software and then conclude that it must be an agent because of
that very anthropomorphization, while simultaneously failing to provide
2 – 32

Chapter 2: Introduction to Agents
any sort of discourse or “social contract” between the user and the agent.
Most are barely autonomous, unless a regularly-scheduled batch job
counts. Many do not degrade gracefully, and therefore do not inspire
enough trust to justify more than trivial delegation and its concomitant
risks.” [Foner, 1993]

It is important to take care in classifying agent software as to its
degree of intelligence. The term intelligence has strong historical
and emotional connotations. We believe that it is better to assess
intelligent agent software in terms of its competence. A highly com-
petent agent will exhibit all of the attributes shown in Table 1 (to
some degree). Agents with relatively low competence will exhibit
significantly fewer of these attributes.

Agent Classification
There are probably as many ways of classifying intelligent agent soft-
ware as there are researchers in the field. Nwana provides a typology
defining four types of agents based on their abilities to cooperate,
learn, and act autonomously; she terms these smart agents, collabo-
rative agents, collaborative learning agents, and interface agents
[Nwana, 1996]. Figure 2 depicts how these four types of agents uti-
lize the capabilities described above.

Collaborative Agents

Collaborative agents emphasize autonomy and cooperation to per-
form tasks by communicating and possibly negotiating with other
agents to reach mutual agreements. These agents are used to solve
distributed problems where a large centralized agent is impractical
(e.g., air traffic control). Central to this class of agent is a well-
defined agent communications language such as KQML, which is
described later in this paper.
2 – 33

Chapter 2: Introduction to Agents
Interface Agents

Interface agents are autonomous and utilize learning to perform
tasks for their users. The inspiration for this class of agents is a per-
sonal assistant that collaborates with the user. This class of agent is
used to implement assistants, guides, memory aides, and filters;
perform matchmaking and referrals; or buy and sell on behalf of the
user.

Mobile Agents

Mobile agents are computational processes capable of moving over
a network (possibly a wide area network such as the Internet or
World Wide Web), interacting with foreign hosts, gathering infor-
mation on behalf of the user, and returning to the user after per-
forming their assigned duties. Mobile agents are implementations
of remote programs (i.e., programs developed on one machine and
delivered to a second machine for subsequent execution). Many of

96068

Smart
Agents

Collaborative
Learning
Agents

Interface
Agents

Collaborative
Agents

Cooperate Learn

Autonomous
Operation

Figure 2. Agent Typology
2 – 34

Chapter 2: Introduction to Agents
the issues that must be addressed in remote programming must also
be addressed in dealing with mobile agents. These include:

• program naming – assigning names to agent programs to distin-
guish one from another

• program authentication – authenticating the implementor of an
agent program

• program migration – moving a program from one machine to
another

• program security – ensuring that a program does not do harm to
the executing machine

The popular press and the trade press have in many cases treated
mobile agents as the only embodiment of intelligent agents. As
Nwana points out quite emphatically, “mobility is neither a necessary
nor sufficient condition for agenthood.” [Nwana, 1996]

Information Agents

One of the most popular uses for intelligent agents is for finding,
analyzing and retrieving large amounts of information. Information
agents are tools to help manage the tremendous amount of informa-
tion available through networks such as the World Wide Web and
Internet [Cheong, 1996]. Information agents access the network
looking for particular kinds of information, filter it, and return it to
their users. Information agents are designed to mitigate the informa-
tion overload caused by the availability of large amounts of poorly
cataloged information. These agents typically use HTTP protocols to
access information, although they may also take advantage of KQML
or other agent communications languages for interagent communica-
tions.
2 – 35

Chapter 2: Introduction to Agents
Heterogeneous Agent Systems

Heterogeneous agent systems refer to a collection of two or more
agents with different agent architectures. Because of the wide vari-
ety of application domains, it is unlikely that any one agent archi-
tecture will be used exclusively across all domains; for each
domain, the most appropriate agent architecture will be selected.
Agents in these heterogeneous systems will communicate, cooper-
ate, and interoperate with each other. A key requirement for this
interoperation is the availability of an agent communications lan-
guage that will allow different kinds of software agents to commu-
nicate with each other.

For purposes of this document we consider an intelligent agent to
be any software program that can operate autonomously (i.e., with-
out user intervention), learn the habits and preferences of the user,
take instructions from and communicate with the user and/or other
agents, and perform the duties that the user or other agent assigns it.
Intelligent agents are specialized to provide a high level of compe-
tence and capability in narrow domains. An intelligent agent must
be able to develop high-level plans and goals and attempt to satisfy
those goals.
2 – 36

Chapter 2: Introduction to Agents
C. Intelligent Agent Architectures

Background: Mentalistic Agents
This section provides a detailed description of an intelligent agent
implementation. The motivation for the AgentBuilder agent architec-
ture is the seminal work of Shoham [Shoham, 1990; Shoham,1991;
Shoham, 1993; Shoham, 1995] in developing cognitive, i.e., mental
model-based, agents. Shoham defined an agent programming lan-
guage (AGENT-0) for writing agent programs. He theorized that
cognitive agents possess a mental state which is composed of various
mental elements: beliefs, commitments, capabilities, and commit-
ment rules.

Shoham’s Work

Shoham describes two primitive modalities of mental state: belief and
commitment. Commitment is treated as a decision to act rather than a
decision to pursue a goal. A strong condition is placed on belief;
namely that agents have perfect memory of, and faith in, their beliefs
and only relinquish a belief if they learn a contradictory fact. Beliefs
persist by default. Furthermore, the absence of a belief also persists
by default but in a slightly different sense. If an agent does not
believe a fact at a certain time (as opposed to believing the negation
of the fact), then the only reason the agent will come to believe it is if
the agent learns it.

AGENT-0 defines two different action types: private actions and
communicative actions. Private actions are the primary method
agents use to accomplish tasks that affect the agent’s environment.
For example, a database agent might include private actions that exe-
cute SQL queries on a database. Communicative actions are the
mechanism for exchanging messages with other agents.
2 – 37

Chapter 2: Introduction to Agents
While agent behavior can be arbitrarily complex, it is produced
using relatively simple operations. Agents can receive messages,
send messages, perform private actions, and update their own men-
tal models. The behavior of an agent is governed by its program.
An AGENT-0 program consists of initial beliefs, initial commit-
ments, the capabilities of the agent, and the commitment rules. Ini-
tial beliefs and initial commitments are present in the mental state
at agent start-up. Even though initial commitments are instantiated
when the agent starts executing they may not be applicable until
some specific time in the future. Capabilities define the actions that
the agent can perform and are fixed for the lifetime of the agent.
Commitment rules determine the actions performed and the mental
changes of the agent in all situations.

Agent Mental Models
Shoham’s AGENT-0 research was extended by Thomas, who
developed PLAnning Communicating Agents – PLACA [Thomas,
1993; Thomas, 1994], an agent programming language similar to
AGENT-0 with extensions for planning. AgentBuilder further
extends the work of Shoham and Thomas and provides a new, more
practical, user-friendly, agent programming language. This object-
oriented language is called the Runtime Agent Definition Language
(RADL). AgentBuilder provides graphical tools for creating
RADL programs that execute in AgentBuilder’s run-time system.
The following paragraphs describe the runtime language and agent
architecture in more detail.

Beliefs

Beliefs are a fundamental part of the agent’s mental model. Beliefs
represent the current state of the agent’s internal and external world
and are updated as new information about the world is received.
An agent can have beliefs about the world, beliefs about another
2 – 38

Chapter 2: Introduction to Agents
agent’s beliefs, beliefs about interactions with other agents, and
beliefs about its own beliefs.

Mental model integrity is improved because belief instances and pat-
tern variables are always of known type, so the agent’s inference
engine can ensure that comparisons between mental model elements
are always valid. This prevents accidental matches between beliefs
and variables of differing types.

Runtime efficiency is improved because belief templates allow the
agent’s inference engine to focus its search activities when looking
for beliefs that match specified rule conditions. In most situations
only one or, at most, a small subset of the beliefs need be examined.

Capabilities

A capability is a construct used by the agent to associate an action
with that action’s necessary preconditions. The necessary precondi-
tions (sometimes known as executability or primary preconditions)
are the preconditions that must be satisfied before execution of the
action [Thomas, 1993]. An agent’s list of capabilities defines the
actions that the agent can perform provided that the necessary pre-
conditions are satisfied. A capability is static and holds for the life-
time of an agent. However, the actions an agent can perform may
change over time because changes in the agent’s beliefs may alter the
truth value of precondition patterns in the capability.

For example, consider an agent used to control access to a database.
One of the actions of such an agent is to perform queries. A simple
capability for the MakeQuery action is:
Action: MakeQuery (database, ?Query)
Preconditions: database.Status IS Online

In this example, the precondition is satisfied when the agent believes
the database is on-line. Only then can the execution of the MakeQuery
2 – 39

Chapter 2: Introduction to Agents
action proceed. Although this capability will not change during the
lifetime of the agent, the agent’s ability to perform the MakeQuery
action will depend on the agent’s belief about the status of the data-
base.

The AgentBuilder agent architecture classifies actions in two main
categories, private actions and communicative actions, as did Sho-
ham. Private actions are actions that affect or interact with the
environment of the agent and do not depend on interaction with
other agents. Communicative actions are defined as actions that
send messages to other agents.

Capabilities are used by the agent to decide whether to adopt com-
mitments (described below). An agent will not adopt a commit-
ment to perform an action if the agent can never be capable of
performing that action. Capabilities are also used to determine
whether a committed action can be executed.

Commitments

A commitment is an agreement, usually communicated to another
agent, to perform a particular action at a particular time. The usual
sequence of operations will be as follows: one agent, say agent
“Alice”, will send a commitment request in a message to another
agent, say agent “Betty”. Betty will accept or reject the request
based on the details of the request, her behavioral rules and current
mental model (beliefs, existing commitments, etc.). Finally, Betty
will send a message to Alice indicating acceptance or rejection of
the request.

If Betty accepts the request she agrees to perform the requested
action at the requested time, if possible. It should be noted that a
commitment is not a guarantee that an action will be performed;
more precisely, a commitment is an agreement to attempt a particu-
2 – 40

Chapter 2: Introduction to Agents
lar action at a particular time if the necessary preconditions for that
action are satisfied at that time.

When the current time equals the commitment time (assuming Betty
adopted the commitment), Betty must test the necessary precondi-
tions of the committed action to ensure that the action can be exe-
cuted. Betty must have a capability corresponding to the committed
action (otherwise she could not have adopted the commitment), and
the capability will have zero or more precondition patterns that define
the necessary preconditions for the action. To test the preconditions
Betty must match the precondition patterns against her current
beliefs. If all patterns evaluate to true, Betty can initiate execution of
the committed action, otherwise she cannot—an agent should not
attempt to execute an action for which the necessary preconditions
fail even if the agent is committed to that action.

In general, successful execution of an action may be beyond the
agent’s control. For example, agent Betty may have committed to
make an inquiry into a database on behalf of Alice. Even if the nec-
essary preconditions are met (e.g., Betty believes the database is cur-
rently functioning) and Betty is able to initiate execution, the action
may still fail (e.g., a disk could crash during the database access).
Betty must monitor the execution so she will be able to send a mes-
sage back to Alice to report the success or failure of the commitment.

Behavioral Rules

In Shoham’s model, all actions were performed only as the result of
commitments. AgentBuilder has extended the idea of a commitment
rule to a include a general behavioral rule. Behavioral rules deter-
mine the course of action an agent takes at every point throughout the
agent’s execution. Behavioral rules match the set of possible
responses against the current environment as described by the agent’s
current beliefs. If a rule’s conditions are satisfied by the environ-
2 – 41

Chapter 2: Introduction to Agents
ment, then the rule is applicable and the actions it specifies are per-
formed.

Behavioral rules can be viewed as WHEN-IF-THEN statements. The
WHEN portion of the rule addresses new events occurring in the
agent’s environment and includes new messages received from
other agents. The IF portion compares the current mental model
with the conditions that are required for the rule to be applicable.
Patterns in the IF portion match against beliefs, commitments,
capabilities, and intentions. The THEN portion defines the agent’s
actions and mental changes performed in response to the current
event, mental model, and external environment. These may
include:

• mental model update
• communicative actions
• private actions

 A behavioral rule is allowed to have any combination of the possi-
ble actions and mental changes outlined above.

The following listing describes the format for the behavioral rules.
 NAME rule name
 WHEN
 Message Condition(s)
 IF
 Mental Condition(s)
 THEN
 Private Action(s)
 Mental Change(s)
 Message Action(s)

The following paragraphs provide an example and a description of
behavioral rules. The agent used in this example is a seller agent
representing a grocery store in an electronic marketplace. One of
2 – 42

Chapter 2: Introduction to Agents
the agent's behavioral rules is shown along with a snapshot of the
agent's mental model at a particular point in time.

The agent's mental model is composed of several user-defined
PAC1instances (e.g., InventoryRecord and SellerFrame instances),
several built-in PAC instances (e.g., Time and Agent instances), and
two Java instances. Some of the instances are named instances, such
as the currentTime and accountBalance instances. Some of the
instances are not named, such as the InventoryRecord instances. The
currentTime instance is marked with a * to indicate that it changed
during the last cycle. Figure 3 shows an agent’s mental model.

This mental model contains three Agent beliefs, one for the store
agent called the Store 2 agent and two other known agents. There
are three InventoryRecord beliefs, one for each product sold by this
store. The SellerFrame is a graphical interface (derived from
java.awt.Frame) used to display the store agent's activities to the
user. The mental model contains a belief about the store's current
account balance, stored in a Float object, and a belief about the status
of the graphical interface.

The rule shown below in Figure 4 is used to accept a message con-
taining a price quote request from a known buyer agent, fill in this
store's price, then return the message to the buyer agent. This is just
one rule of approximately a dozen rules that define the behavior of
this agent in a highly simplified electronic marketplace.

The WHEN section of the rule is used to test an incoming message from
another agent and the IF section of the rule is used to test conditions
in this agent's mental model. All of these conditions in the WHEN and

1. A PAC is a Project Accessory Class. These are the user-defined classes that
represent concepts in the domain and also define the actions of the agent.
2 – 43

Chapter 2: Introduction to Agents
IF sections are implicitly ANDed together, i.e., the set is satisfied if
and only if all conditions are satisfied. If any condition is not satis-
fied then the rule is not applicable to the situation. Evaluation stops
as soon as a single condition fails.

If, however, all conditions are satisfied then the rule will be acti-
vated and then its actions and mental changes are put on the agenda
for execution. In this example the rule will send a return message

Mental Model (Beliefs)

* Time<currentTime> Mon Jun 08 14:23:08 PDT 1998

 Time<startupTime> Mon Jun 08 14:22:44 PDT 1998

 Agent<SELF> Agent Name: Store 2 Address: harding.reticu-
lar.com

 Agent<Buyer> Agent Name: Buyer Address: quincy.reticu-
lar.com

 Agent<Store 1> Agent Name: Store 1 Address: hard-
ing.reticular.com

 InventoryRecord<> ProductName = Milk, Quantity = 41 gal-
lon, UnitPrice = 2.24

 InventoryRecord<> ProductName = Bread, Quantity = 28
loaf, UnitPrice = 2.33

 InventoryRecord<> ProductName = Bananas, Quantity = 32
lb., UnitPrice = 0.55

Figure 3. An Agent’s Mental Model (Beliefs)
2 – 44

Chapter 2: Introduction to Agents
containing a complete price quote to the buyer agent that sent a price
quote request.

%message is a variable of type KqmlMessage; the leading character % is
used to indicate that this is a message variable which binds to incom-

"Receive Bid Request"

WHEN

1. (%message.sender EQUALS ?buyer.name)

2. (%message.performative EQUALS "ask-one")

3. (%message.contentType EQUALS PriceQuote)

4. (%message.content.productName EQUALS ?invento-
ryRecord.productName)

5. (%message.content.quantity <= ?inventoryRecord.quantity
)

IF

1. (Interface_ready_to_print EQUALS true)

THEN

1. (DO PrintStatus(Concat("Sent price quote to ", %mes-
sage.sender)))

2. (SET_VALUE_OF %message.content.price TO ?invento-
ryRecord.unitPrice)

3. (SET_VALUE_OF %message.content.storeName TO SELF.name)

4. (DO SendKqmlMessage(%message, SELF.name, %mes-
sage.sender, "tell",,

 %message.replyWith,,,,,,))

5. (DO SleepUntilMessage())

Figure 4. An Example Rule
2 – 45

Chapter 2: Introduction to Agents
ing messages. The dot-separated list following a variable name
represents subobjects, or subobjects of subobjects, etc. In the first
pattern, for example, %message.sender accesses the sender field (a
String) of the KqmlMessage binding. In the fourth pattern, %mes-
sage.content.productName means “bind to an incoming message,
then access the content subobject of the message, then access the
productName subobject of the content”.

?buyer is a variable of type Agent, which is a built-in class provided
with AgentBuilder to represent beliefs about agents (e.g., name,
address, etc.). The leading character ? is used to indicate that this
variable binds to Agent instances in the mental model. ?buyer.name
evaluates to a String, so the first pattern in the WHEN section is a
comparison between the String objects bound to two variables.

The second pattern in the WHEN section is similar to the first except
that it compares a field in the message to a String constant. If eval-
uation of the first pattern is successful then evaluation proceeds to
the second pattern, using the same binding for the %message vari-
able as was used in the first pattern.

The third pattern checks the type of the content of the message and
compares it to the PriceQuote class, which is a PAC designed for
this problem domain. If the content object is a PriceQuote object
then rule evaluation proceeds to the fourth pattern. The fourth pat-
tern checks the value of one subobject in the content of the mes-
sage.

?inventoryRecord is a variable of type InventoryRecord, another
PAC designed for this problem domain. This has fields for pro-
ductName, quantity, and unitPrice. The fifth WHEN condition com-
pares the quantity field in the PriceQuote from the message with
the quantity field in an InventoryRecord in the mental model. Note
2 – 46

Chapter 2: Introduction to Agents
that the InventoryRecord binding used in pattern 5 is the same bind-
ing that was used in pattern 4. We test the quantity field in the Inven-
toryRecord which has the same product name as the PriceQuote in
the message.

The first and only IF condition in this rule is a test of a named
instance. This pattern evaluates to true if the mental model contains
a Boolean instance named "Interface_ready_to_print" with a value
of true. The Boolean instance needed by this pattern gets asserted by
another rule, the Launch Interface rule, which fires before the
Receive Bid Request rule.

The left-hand side of the Receive Bid Request rule can be para-
phrased as follows, from the point of view of the store agent:

WHEN I receive a KQML message sent from a known buyer agent, and
the performative in that message is “ask-one”, and the content type in
that message is PriceQuote, and the product name in the message's
PriceQuote is the same as the product name in one of my Invento-
ryRecords, and (according to that same InventoryRecord) I have at
least as much product on hand as the quantity requested in the Price-
Quote, and IF the interface is ready to receive a PrintStatus com-
mand, THEN …

The THEN section of this example rule consists of three actions and
two mental changes. The first THEN pattern is an action statement
with the user-defined action PrintStatus. This invokes a method on
the SellerFrame interface PAC, which prints the status of the store
agent so the user can follow the progress of the transaction. The
argument for the PrintStatus action is constructed using the built-in
Concat function, which concatenates two strings into a single string.
2 – 47

Chapter 2: Introduction to Agents
The next two THEN patterns modify fields in the KQML message
that was tested in the WHEN section. The first pattern fills in the price
field of the PriceQuote content object, using a value from the same
InventoryRecord object used in patterns 4 and 5 in the WHEN section.
Next, the storeName field in the PriceQuote content object is filled
in using the agent's belief about its own name, taken from the SELF
Agent belief. The SELF belief is automatically added to the agent's
mental model by the run-time system.

After the message has been modified, it is sent back to the buyer
agent via the built-in action SendKqmlMessage. This action takes
several arguments such as message, sender, receiver, performative,
etc. (The ordering of the arguments may be difficult to understand
in a printed example such as this but they are easy to specify in the
Rule Editor.)

In this example the received message is being sent back to the
buyer, the sender is now the store agent (i.e., SELF.name), the
receiver will be the original sender (i.e., %message.sender), the per-
formative is “tell”, and the reply-with field of the original mes-
sage is used to set the in-reply-to field of the new outgoing
message. The empty argument slots indicate that all other fields in
the message should be left as they are (the content object has
already been changed from its original values by the SET_VALUE_OF
statements).

Finally, after the content object has been updated and the message
sent back to the buyer agent, the store agent goes to sleep by invok-
ing the built-in SleepUntilMessage action. The store agent will
automatically be re-awakened by its controller when another mes-
sage is received.
2 – 48

Chapter 2: Introduction to Agents
Intentions

An intention is an agreement, usually communicated to another
agent, to achieve a particular state of the world at a particular time.
Intentions are similar to commitments in that one agent performs
action(s) on behalf of another. However, a commitment is an agree-
ment to perform a single action whereas an intention is an agreement
to perform whatever actions are necessary to achieve a desired state
of the world.

Requests containing intentions allow agents to communicate in terms
of high-level goals and allow the receiving agent (the one who adopts
the intention) the freedom to achieve the state of the world using
whatever actions are appropriate for that agent. This is more efficient
and more robust than requesting a specific sequence of commitments.
The agent performing the actions has a better understanding of its
own area of expertise within the problem domain and may be able to
skip unneeded actions, redo actions when necessary, find alternate
actions that will achieve the goal, etc.

In order to achieve the goal specified by an intention, the agent must
be able to construct plans to achieve that goal, monitor the success of
the actions performed, and construct alternate plans if the original
plan fails. Thus, support for processing intentions requires an addi-
tional level of sophistication and capability in the agent.

Agent Interpreter
Figure 5 illustrates the AgentBuilder intelligent agent architecture. In
this architecture an interpreter continually monitors incoming mes-
sages, updates the agent’s mental model and takes appropriate
actions.

At start-up, an agent is initialized with initial beliefs, initial commit-
ments, initial intentions, capabilities, and behavioral rules. A non-
trivial agent requires at least one behavioral rule; the other elements
2 – 49

Chapter 2: Introduction to Agents
Figure 5. Agent Execution Process
2 – 50

Chapter 2: Introduction to Agents
are optional. For example, if an agent has no initial commitments
then the agent is not initially committed to doing anything (for itself
or anyone else). The same logic applies to initial beliefs and initial
intentions. If the capabilities list is empty the agent will not be able
to perform any actions.

The mental model contains the current beliefs, commitments, inten-
tions, capabilities, and rules of the agent. Although rules and capabil-
ities are static, the agent’s beliefs, commitments, and intentions are
dynamic and can change over the agent’s lifetime.

The agent execution cycle consists of the following steps:

• processing new messages
• determining which rules are applicable to the current situation
• executing the actions specified by these rules
• updating the mental model in accordance with these rules
• planning

Processing a new message requires identifying the sender and deter-
mining the sender’s authenticity; then the message is parsed and
made part of the mental model. The next step is determining which
rules match the current situation. Pattern matching compares the ele-
ments of the mental model with conditional patterns in the behavioral
rules to determine which rules are satisfied. A rule is marked for exe-
cution when all of its conditions are satisfied; the rule is then placed
on the agent’s agenda for execution. Rule execution consists of per-
forming private and communicative actions and making mental
changes. During execution, all of the actions (private and communi-
cative) are executed sequentially.

Next, the agent’s mental model is updated by adding mental elements
(assertions) or removing mental elements (retractions) as specified by
the executing behavioral rules. The final step in the cycle requires
developing a plan for the agent. Planning is performed by a planning
2 – 51

Chapter 2: Introduction to Agents
module attached to the agent. An agent’s planning module must
develop plans that satisfy goals specified by the agent’s intentions.

KQML
The Knowledge Query and Manipulation Language (KQML) is a
high-level language intended to support interoperability among
intelligent agents in distributed applications. It is both a message
format and a message-handling protocol to support run-time knowl-
edge-sharing among agents. KQML is an interlingua, a language
that allows an application program to interact with an intelligent
system. It can also be used for sharing knowledge among multiple
intelligent systems engaged in cooperative problem solving. This
language, originally developed as part of a DARPA Knowledge
Sharing initiative, is becoming a de facto standard for interagent
communications languages [Finin, et al, 1994a; Finin, et al, 1994b;
Finin, et al, 1994c; Labrou et al, 1994; Labrou, 1996].

A KQML message consists of a performative, the content of the
message, and a set of optional arguments. The performative speci-
fies an assertion or a query used for examining or changing a Vir-
tual Knowledge Base (VKB) in the remote agent. A listing of the
defined performatives for KQML [Labrou, 1996] is provided in
Table 3.

AgentBuilder agents provide support for all of the performatives
specified for the Knowledge Query and Manipulation Language
(KQML). Agents constructed with AgentBuilder can communi-
cate and interoperate with any other agent that also “speaks”
KQML. Thus, AgentBuilder agents can communicate with existing
agents or agents constructed using other methods, tools, and/or
architectures other than those supported by AgentBuilder.
2 – 52

Chapter 2: Introduction to Agents
Table 3. Summary of Reserved Performatives

Name Meaning for Sender S and Recipient R with Virtual Knowledge Base (VKB)

achieve S wants R to make something true of its physical environment
advertise S wants R to know that S can and will process a message like the

one in :content
ask-one S wants one of R’s instantiations of the :content that is true of R
ask-all S wants all of R’s instantiations of the :content that is true of R
ask-if S wants to know if the :content is in R’s VKB
broadcast S wants R to send a message to all agents that R knows of
broker-all S wants R to find all responses to a <performative> (some agent

other than R is going to provide that response)
broker-one S wants R to find one response to a <performative> (some agent

other than R is going to provide that response)
delete-all S wants R to remove all matching sentences from its VKB
delete-one S wants R to remove one matching sentence from its VKB
deny the negation of the sentence is in S’s VKB
discard S will not want R’s remaining responses to a previous multi-

response message
error S considers R’s earlier message to be malformed
eos the end of stream marker to a multiple-response (stream-all)
forward S wants R to forward the message to the :to agent (R might be that

agent)
insert S asks R to add the :content to its VKB
next S wants R’s next response to a message previously sent by S
ready S is ready to respond to a message previously received from R
recommend-all S wants to learn of all agents who can respond to a <performa-

tive>

recommend-one S wants to learn of an agent who can respond to a <performa-
tive>

recruit-all S wants R to get all suitable agents to respond to a <performa-
tive>

recruit-one S wants R to get one suitable agent to respond to a <performative>
register S announces to R its presence and symbolic name
rest S wants R’s remaining responses to a previously sent by S
2 – 53

Chapter 2: Introduction to Agents
sorry S understands R’s message but cannot provide a more informative
reply

standby S wants R to announce its readiness to provide a response to the
message in :content

stream-all multiple-response version of ask-all
subscribe S wants updates to R’s response to a performative
tell the sentence in S’s VKB
transport-
address

S associates its symbolic name with a new transport address

unachieve S wants R to reverse the act of a previous achieve
undelete S wants R to reverse the act of a previous delete
uninsert S wants R to reverse the act of a previous insert
unregister S wants R to reverse the act of a previous register
untell the sentence is not in S’s VKB

Table 3. Summary of Reserved Performatives

Name Meaning for Sender S and Recipient R with Virtual Knowledge Base (VKB)
2 – 54

Chapter 3: Agent Communications Languages

3 – 55
C h a p t e r 3

Agent Communications
Languages

Chapter Overview

You can find the following information
in this chapter:

• An Introduction to KQML
• KQML Semantics
• KQML Parameters
• KQML Performatives

Chapter 3: Agent Communications Languages
A. KQML
The Knowledge Query and Manipulation Language (KQML) is a
language and a protocol that supports network programming specif-
ically for knowledge-based systems or intelligent agents.

 KQML is primarily concerned with pragmatics and, secondarily,
with semantics. Pragmatics among computer processes includes
knowing who to talk with and how to find them, as well as knowing
how to initiate and maintain an exchange. KQML is a language and
a set of protocols which support computer programs in identifying,
connecting to, and exchanging information with other programs
[Finin et al., 1994b]. We discuss the specifications and implica-
tions of the KQML language in the following sections.

KQML Language Description
KQML is a high-level language intended to support interoperability
among intelligent agents in distributed applications. It is both a
message format and a message-handling protocol to support run-
time knowledge sharing among agents. KQML can be used as a
language for an application program to interact with an intelligent
system. It can also be used for two or more intelligent systems to
share knowledge in support of cooperative problem solving.

Layer of Communication
KQML is most useful for communication among agent-based pro-
grams, in the sense that the programs are autonomous and asyn-
chronous. Autonomy entails that agents may have different, and
even conflicting, agendas. Thus, the meaning of a KQML message
is defined in terms of constraints on the message sender rather than
the message receiver. This allows the message receiver to choose a
course of action that is compatible with other aspects of its func-
tion. Of course, most useful agent architectures strive for maximal
3 – 56

Chapter 3: Agent Communications Languages
cooperation among agents, but complete cooperation is not always
possible.

There are several levels at which agent-based systems must agree,
at least in their interfaces, in order to successfully interoperate
[Finin et al., 1994c]:

• Transport – how agents send and receive messages
• Language – what the individual messages mean
• Policy – how agents structure conversations
• Architecture – how to connect systems in accordance with con-

stituent protocols

Conceptually, the KQML language involves only three main layers.
The Transport and Architecture layers, which the agents are con-
cerned with separately, can be collapsed into one layer with
KQML. Thus, the KQML language can be viewed as being divided
into three layers: the content layer, the message layer and the com-
munication layer, as illustrated in Figure 6.

The content layer is the actual content of the message in the pro-
gram’s own representation language. KQML can carry any repre-
sentation language, including languages expressed as ASCII strings
and those expressed using a binary notation. All of the KQML

Figure 6. The Three Layers of the KQML Language

Communication

Content

Message

Mechanics of communication

Logic of communication
(performative or speech act)

Content of communication
(in agreed upon language)

96082
3 – 57

Chapter 3: Agent Communications Languages
implementations ignore the content portion of the message except
to the extent that they need to determine its boundaries.

 The communication layer encodes a set of features to the message
which describe the lower level communication parameters, such as
the identity of the sender and recipient, and a unique identifier asso-
ciated with the communication.

The message layer forms the core of the language. It determines the
kinds of interactions one can have with a KQML-speaking agent.
The primary function of the message layer is to identify the proto-
col to be used to deliver the message and to supply a speech act, or
performative, which the sender attaches to the content. The perfor-
mative signifies that the content is an assertion, a query, a com-
mand, or any of a set of known performatives. Because the content
is opaque to KQML, this layer also includes optional features
which describe the content: its language, the ontology it assumes,
and some type of more general description, such as a descriptor
naming a topic within the ontology. These features make it possible
for KQML implementations to analyze, route, and properly deliver
messages even though their content is inaccessible.

A KQML message consists of a performative, its associated argu-
ments which include the real content of the message, and a set of
optional arguments. The main focus of KQML is on its extensible
set of performatives, which defines the permissible operations that
agents may attempt on each other’s knowledge and goal stores at
run time. The performatives comprise a substrate on which to
develop higher-level models of inter-agent interaction such as con-
tract nets and negotiation.1

 The optional arguments of the KQML message describe the con-
tent in a manner which is independent of the syntax of the content

1. http://www.cs.umbc.edu/kqml/whats-kqml.html
3 – 58

Chapter 3: Agent Communications Languages
language. For example, a message representing a query about the
location of a particular airport might be encoded as:
(ask-one :content (geoloc lax (?long

?lat))
:ontology geo-model3)

In this message, the KQML performative is ask-one, the content is
(geoloc lax (?long ?lat)) and the assumed ontology is identified
by the token :geo-model3. The same general query could be con-
veyed using standard Prolog as the content language in a form that
requests the set of all answers as [Finin et al., 1994b]:
(ask-all :content

"geoloc(lax,[Long,Lat])"
:language standard_prolog
:ontology geo-model3)

In addition, KQML provides a basic architecture for knowledge
sharing through a special class of agents called communication
facilitators which coordinate the interactions of other agents.

KQML String Syntax
A KQML message is expressed as an ASCII string using the syntax
defined in this section. This syntax is a restriction on the ASCII rep-
resentation of Common LISP Polish-prefix notation.

The ASCII-string LISP list notation was originally chosen because
it is readable by humans, simple for programs to parse, particularly
for many knowledge-based programs, and transportable by many
inter-application messaging platforms. However, no choice of
message syntax will be both convenient and efficient for all mes-
saging APIs.

Unlike LISP function invocations, parameters in performatives are
indexed by keywords and therefore are order independent. These
3 – 59

Chapter 3: Agent Communications Languages
keywords, called parameter names, must begin with a colon (:)
and must precede the corresponding parameter value. Performative
parameters are identified by keywords rather than by their position
due to a large number of optional parameters to performatives
[Finin et al., 1994c].

The BNF for KQML, given in Figure 7, assumes definitions for
<ascii>, <alphabetic>, <numeric>, <double-quote>, <backslash>,
and <whitespace>.“*” means any number of occurrences, and “–”
indicates set difference. Note that <performative> is a specializa-
tion of <expression>. Also note that in length-delimited strings,
e.g. “#3"abc”, the whole number before the double-quote specifies
the length of the string after the double-quote.

KQML Semantics
The semantic model underlying KQML is a simple and uniform
context for agents to view each others' capabilities. Each agent
appears as if it manages a knowledge base (KB). That is, communi-
cation with the agent is with regard to this KB base. For example,
there are questions about what a KB contains, statements about
what a KB contains, requests to add or delete statements from the
KB, or requests to use knowledge in the KB to route messages to
appropriate other agents.

The implementation of an agent is not necessarily structured as a
knowledge base. The implementation may use a simpler database
system or a program using a special data structure as long as wrap-
per code translates that representation into a knowledge-based
abstraction for the benefit of other agents. Thus, we say that each
agent manages a virtual knowledge base (VKB).

When defining performatives, it is useful to classify the statements
in a VKB into two categories: beliefs and goals. An agent's beliefs
encode information it has about itself and its external environment,
including the VKBs of other agents. An agent's goals encode states
3 – 60

Chapter 3: Agent Communications Languages

96083
of its external environment that the agent will act to achieve. Per-
formative definitions make reference to either or both of an agent's
goals and beliefs, e.g., that the agent wants another agent to send it
a certain class of information. The English-prose performatives
make reference to these terms, but this view of the VKB is espe-
cially important in the formal semantics of KQML [Finin et al.,
1994c].

Agents talk about the contents of their VKB and others' VKBs
using KQML, but the encoding of statements in VKBs can use a
variety of representation languages. That is, the KQML performa-
tive “tell” is used to specify that a particular string is contained in

Figure 7. KQML String Syntax in BNF
3 – 61

Chapter 3: Agent Communications Languages
an agent's belief store, but the encoding of that string can be a rep-
resentation language other than KQML. This is the content layer of
the language which was discussed previously.

The only restrictions on the specific representations are that they be
sentential. Expressions using the given representation can be
viewed as entries in a VKB. In addition, sentences have an encod-
ing as an ASCII string so that sentences can be embedded in
KQML messages.

KQML Parameters
Performatives take parameters identified by keywords. The struc-
ture of parameters was briefly discussed in the syntax section of
this document. The following sections define the meaning of some
common performative parameters by coining their keywords and
describing the meaning of the accompanying values. Since the fol-
lowing parameters are used heavily, this will facilitate brevity in the
performative definitions.

The specification of reserved parameter keywords is useful in two
main ways. First, it is useful to mandate some degree of uniformity
on the semantics of common parameters to reduce programmer
confusion. Also, it is useful to support some level of understanding
of performatives with unknown names but with known parameter
keywords. The following parameters are reserved in the sense that
any performative's use of parameters with those keywords must be
consistent with the definitions below. The reserved parameter key-
words are summarized in Table 4 on page 64.

:sender <word>
:receiver <word>

These parameters convey the actual sender and receiver of a perfor-
mative, as opposed to the virtual sender and receiver in the :from
and :to parameters of networking performatives.
3 – 62

Chapter 3: Agent Communications Languages
:reply-with <expression>
:in-reply-to <expression>

If the <expression> is the word “nil” or this parameter is absent
from the performative, then the sender does not expect a reply. If
the <expression> is the word “t” then the sender expects a reply.
Otherwise, the sender expects a reply containing a :in-reply-to
parameter with a value identical to <expression>.
:content <expression>
:language <word>
:ontology <word>

The :content parameter indicates the “direct object” (in the linguis-
tic sense) of the performative. For example, if the performative
name is “tell” then the :content will be the sentence being told.
The <expression> in the :content parameter must be a valid
expression in the representation language specified by the :lan-
guage parameter, or KQML if the :language parameter does not
appear. Furthermore, the constants used in the expression must be
a subset of those defined by the ontology named by the :ontology
parameter, or the standard ontology for the representation language
if the :ontology parameter does not appear.

Both :language and :ontology are restricted to only take <word> as
a value, and therefore complex terms (e.g., denoting unions of
ontologies), are not allowed. Eventually, it will be possible to sup-
port a calculus of ontologies and languages, but its proper place is
in performatives that define new KQML names. This way, only
those agents that can process extensional performatives are
expected to understand such a calculus.

:force <word>
3 – 63

Chapter 3: Agent Communications Languages
If the value of this parameter is the word “permanent,” then the
sender guarantees that it will never deny the meaning of the perfor-
mative. Any other value indicates that the sender may deny the
meaning in the future. This parameter works to help agents avoid
unnecessary truth-maintenance overhead. The default value is
“tentative.”

KQML Performatives1

A KQML message is called a performative. The term is from
Speech Act Theory because the message is intended to perform
some action by virtue of being sent. This document defines a sub-
stantial number of performatives in terms of what they connote
about the sender's knowledge. However, the performatives defined

Table 4. Summary of Reserved Parameter Keywords and their
Meanings

Keyword Meaning

:content the information about which the performative expresses an atti-
tude

:force whether the sender will ever deny the meaning of the perfor-
mative

:in-reply-to the expected label in a reply

:language the name of representation language for the :content
parameter

:ontology the name of the ontology (e.g., set of term definitions) used in
the :content parameter

:receiver the actual receiver of the performative

:reply-with whether the sender expects a reply, and if so, a label for the
reply

:sender the actual sender of the performative

1. The list of KQML performatives is documented in [Finin et al., 1994c]: http://
www.cs.umbc.edu/kqml/kqmlspec/spec.html
3 – 64

Chapter 3: Agent Communications Languages
herein are neither necessary nor sufficient for all agent-based appli-
cations. Therefore, agents need not support the entire set of
defined performatives. A majority of the agents will only sup-
port a small subset. In addition, agents may use performatives that
do not appear in this specification. New performatives should be
defined precisely as specified in a later section.

Table 5. Summary of Reserved Performatives

Name Meaning for Sender S and Recipient R with Virtual Knowledge Base (VKB)

achieve S wants R to make something true of its physical environment
advertise S wants R to know that S can and will process a message like the

one in :content
ask-one S wants one of R’s instantiations of the :content that is true of R
ask-all S wants all of R’s instantiations of the :content that is true of R
ask-if S wants to know if the :content is in R’s VKB
broadcast S wants R to send a message to all agents that R knows of
broker-all S wants R to find all responses to a <performative> (some agent

other than R is going to provide that response)
broker-one S wants R to find one response to a <performative> (some agent

other than R is going to provide that response)
delete-all S wants R to remove all matching sentences from its VKB
delete-one S wants R to remove one matching sentence from its VKB
deny the negation of the sentence is in S’s VKB
discard S will not want R’s remaining responses to a previous multi-

response message
error S considers R’s earlier message to be malformed
eos the end of stream marker to a multiple-response (stream-all)
forward S wants R to forward the message to the :to agent (R might be that

agent)
insert S asks R to add the :content to its VKB
next S wants R’s next response to a message previously sent by S
ready S is ready to respond to a message previously received from R
recommend-all S wants to learn of all agents who can respond to a <performa-

tive>
3 – 65

Chapter 3: Agent Communications Languages
The performative names are reserved. An application is not
KQML-compliant if it uses these performatives in ways that are
inconsistent with the definitions given by the KQML developers
and outlined in this document. These reserved performatives
should be used when possible to increase overall interoperability.

All performatives are described in detail in Appendix 1, “KQML
Performatives” on page 281.

recommend-one S wants to learn of an agent who can respond to a <performa-
tive>

recruit-all S wants R to get all suitable agents to respond to a <performa-
tive>

recruit-one S wants R to get one suitable agent to respond to a <performative>
register S announces to R its presence and symbolic name
rest S wants R’s remaining responses to a previously sent by S
sorry S understands R’s message but cannot provide a more informative

reply
standby S wants R to announce its readiness to provide a response to the

message in :content
stream-all multiple-response version of ask-all
subscribe S wants updates to R’s response to a performative
tell the sentence in S’s VKB
transport-
address

S associates its symbolic name with a new transport address

unachieve S wants R to reverse the act of a previous achieve
undelete S wants R to reverse the act of a previous delete
uninsert S wants R to reverse the act of a previous insert
unregister S wants R to reverse the act of a previous register
untell the sentence is not in S’s VKB

Table 5. Summary of Reserved Performatives

Name Meaning for Sender S and Recipient R with Virtual Knowledge Base (VKB)
3 – 66

Chapter 3: Agent Communications Languages
New Performatives
The primary dimension of KQML extension is through the defini-
tion of new performatives. The definitions of new performatives
must explicitly describe all permissible parameters and default val-
ues for parameters that do not appear in particular messages. A per-
formative definition may coin new parameter names. [Finin et al.,
1994c].

Definitions of new performatives should follow the style of the def-
initions in this section. A definition should convey the following
[Finin et al., 1994c]:

• the performative name;
• all parameters keywords that the performative may contain;
• syntactic categories and semantics for all values of parameters

with non-reserved keywords;
• any additional syntactic and semantic constraints for values of

parameters with reserved keywords;
• the default values of all absent parameters;
• the semantics, in terms of a statement the sender is making of

itself, of the performative name applied to the parameters.
3 – 67

Chapter 3: Agent Communications Languages
B. KQML Conclusions
KQML is a language and associated protocol by which intelligent

software agents can communicate to share information and knowledge.
We believe that KQML will be important in building the distributed
agent-oriented information systems of the future.

KQML offers an abstraction of an information agent (provider or
consumer) at a higher level than is typical in other areas of computer sci-
ence. In particular, KQML assumes a model of an agent as a knowledge-
based system (KBS) [Finin et al., 1994b]. The KBS model easily sub-
sumes a broad range of commonly used information agent models,
including database management systems, hypertext systems, server-ori-
ented software (e.g. finger daemons, mail servers, HTML servers, etc.),
simulations, and more. Such systems can usually be modeled as having
two virtual knowledge bases; one represents the agent's information store
(i.e., beliefs), and the other represents its intentions (i.e., goals).

We are hopeful that future standards for interchange and interopera-
bility languages and protocols will be based on this very powerful and
rich model. This will avoid the built-in limitations of more constrained
models (e.g., that of a simple remote procedure call or relational database
query) and also make it easier to integrate truly intelligent agents with
simpler and more mundane information clients and servers.

KQML has something it seeks from distributed systems work. This
involves the right abstractions and software components to provide basic
communication services. Current KQML-based systems have been built
on the most common transport layers, mainly TCP/IP. The real contribu-
tions that KQML makes are independent of the transport layer. KQML
interface implementations will be based on whatever is seen as the best
transport mechanism.

The contribution that KQML makes to Distributed AI (DAI) research
is to offer a standard language and protocol that intelligent agents can use
to communicate among themselves as well as with other information
servers and clients. Permitting agents to use whatever content language
they prefer will make KQML appropriate for most DAI research. In the
3 – 68

Chapter 3: Agent Communications Languages
continuation of the design of KQML it would be beneficial to build in the
primitives necessary to support all of the interesting agent architectures
currently in use. KQML should prove to be a good tool for DAI research,
and, if used widely, should enable greater research collaboration among
DAI researchers.
3 – 69

Chapter 3: Agent Communications Languages
3 – 70

Chapter 4: Agent Development Process

4 – 71
C h a p t e r 4

Agent Development
Process

Chapter Overview

You can find the following information
in this chapter:

• Process Overview
• Project Management
• Domain Analysis
• Agency Definition
• Agent Behavioral Specification
• Agent Programming
• Debugging Agents and Agencies

Chapter 4: Agent Development Process
A. The Process
As noted in the previous discussion, specifying an agent’s mental
model requires defining its initial beliefs, initial commitments, ini-
tial intentions, capabilities and behavioral rules. The key to build-
ing intelligent agents is having an efficient mechanism for
specifying behavioral rules and other components of the mental
model. AgentBuilder provides a graphical interface for easily and
quickly defining a collection of agents and specifying their mental
models and behaviors.

Developing an intelligent software agent is similar to other soft-
ware development activities in that the software developer must
perform the traditional steps of analysis, design, implementation,
testing and debugging, integration, and maintenance. In many
ways agent software development is similar to object-oriented soft-
ware development.

A software developer using traditional object-oriented program-
ming techniques must identify the objects of interest and specify
the various interactions among those objects. The developer can
define objects as very high-level abstractions (e.g., a bank account)
or very low-level abstractions (e.g., a pushbutton in a graphical user
interface).

In contrast, developing intelligent software agent programs (some-
times called agent-oriented programming) consists of identifying
the roles and functions of various agents and then specifying each
agent’s behavior. Agent-oriented programming is very similar to
object-oriented programming except the software developer works
with complex entities (agents) at much higher levels of abstraction
than is normally done in object-oriented programming. It is much
easier for a software developer to develop complex software and
systems using these high levels of abstraction.
4 – 72

Chapter 4: Agent Development Process
An agent-programming language is a high-level language used to
specify the behavior of the agent for any given situation. The
AgentBuilder toolkit provides an object-oriented language called
RADL (Runtime Agent Definition Language) to create agent pro-
grams.

An agent engine (i.e., agent execution environment) is required for
executing the agent program. This engine must be able to execute
on a wide variety of platforms, provide high performance, and sup-
port creation of sophisticated agent-based application programs.

AgentBuilder provides facilities for creating agent-based applica-
tions programs and includes tools for:

• organization and control of the development project
• problem domain analysis
• agency architecture definition
• specifying agent behavior
• viewing and debugging executing agents

The following paragraphs describe this process in more detail. Fig-
ure 8 illustrates the process of intelligent agent construction using
the AgentBuilder toolkit.

Organize Project
Developers of agent-based software create intelligent agents for a
variety of uses and applications. The AgentBuilder tools allow the
developer to organize projects and associate particular agents and
collections of agents (i.e., agency) with those projects. Developers
can reuse agents developed for one project on a related project.

Likewise, developers will reuse domain knowledge gained in the
course of analyzing a particular domain. For example, a developer
building an e-mail agent will develop an ontology for e-mail and
4 – 73

Chapter 4: Agent Development Process
Figure 8. Constructing Intelligent Agents
4 – 74

Chapter 4: Agent Development Process
can then reuse this e-mail ontology on a new project requiring
development of a spam-filtering agent.

Analyze Problem Domain
The developer will need to perform an analysis of the problem
domain in order to understand the functional and performance
requirements of his agents and agent-based solution. AgentBuilder
provides tools for analyzing and structuring the domain and codify-
ing information about that domain. Domain analysis is facilitated
using conceptual mapping tools and object modeling tools. The
object model specifies all of the objects in the domain and the oper-
ations they can perform. Another product of the domain analysis is
an ontology for that particular domain. This ontology is a formal
description of the problem domain.

An ontology gives meaning to the symbols and expressions used to
describe a domain. For one agent to properly understand the mean-
ing of a message from another agent, both agents must ascribe the
same meaning to the symbols (constants) used in that message. The
ontology maps these symbols to a well-understood meaning for the
problem domain [FIPA, 1997].

Define Agency Architecture
After completing the domain analysis, the software developer will
normally decompose the problem into functions that can be per-
formed by one or more intelligent agents. The developer must
identify each agent and its role in solving the overall problem. The
developer can then create a skeletal agent and define the basic char-
acteristics of that agent with respect to its interaction with other
agents.

After identifying the agents and their roles, the agent developer
defines the interagent communication protocols. Protocol editors
4 – 75

Chapter 4: Agent Development Process
are provided that make it easy for the developer to specify the mes-
sages and handshaking required between agents.

Specify Agent Behavior
After completing the agency definition, the developer then specifies
the behavior of each agent. Agent development is the process of
defining agent behavior. AgentBuilder provides tools for specify-
ing behavioral rules, initial beliefs, commitments, intentions, and
agent capabilities.

The AgentBuilder toolkit supports creation of a user interface
library and an agent actions library and creates an agent definition
file; the user interface and action classes comprise the Project
Accessory Class (PAC) library. The user interface library can be
used to construct the user interface for the agent. Although many
agents will not require any interaction with the user, other agents
will need information from the user and will provide the user with
feedback information about the status of the agent’s processing.

The developer specifies the actions of the agent in the agent actions
library. For each agent action, the developer performs the follow-
ing steps:

• defines the action name and parameter list
• associates the action with a method from an object defined in

the object model
• imports existing class libraries or develops the Java classes that

will implement the action
• stores these classes in the agent actions library

The agent definition file contains a detailed specification of the
agent’s initial mental model and behavior. This file is used with the
agent actions library and the user interface library to fully specify
4 – 76

Chapter 4: Agent Development Process
agent activities and behavior. These three components comprise
the agent program.

Create Agent Application
The final step in the agent construction process consists of loading
the agent program into the Run-Time Agent Engine. The agent
engine is a high-performance execution mechanism that interprets
the agent program and performs the actions specified in the user
interface and agent actions libraries. An agent is composed of the
agent program and the run-time engine. The Run-Time Engine is
described in the next section of this document.

Agent and Agency Debugging
AgentBuilder provides tools that support all phases of the software
agent development process. AgentBuilder provides a debugging
environment to support debugging, testing, and integration of
agents and agencies. In agent-oriented programming, no low-level
source code debugging is necessary because the developer works
with a high-level abstraction—the intelligent agent. However, a
capability for high-level debugging of an agent’s mental model is
required.

The AgentBuilder agent debugger allows the developer to examine
the agent’s mental model. The developer can also step through the
agent's operation cycle-by-cycle and examine the mental model as
the agent executes. The developer can specify breakpoints and run
the agent until a breakpoint is encountered.
4 – 77

Chapter 4: Agent Development Process
4 – 78

Part II. Getting
Started with
AgentBuilder
 – 79

The purpose of this section is to demonstrate how to use Agent-
Builder to construct several example agents by providing step-by-
step instructions. We recommend that you work through these
examples before starting your own agent development work. Prior
to starting this section, read the previous overview of the Agent-
Builder tools. If you need more information about the tools and
their operation as you work through this section, refer to the
remaining chapters in this User’s Guide.

We have also included an Example Project and several example
agnecies in the System Repository. The agents in this example
project are the same as the ones we will develop in this guided,
step-by-step introduction to AgentBuilder. You can examine these
pre-constructed agents at your leisure. However, we strongly rec-
ommend that you work through the examples described in this sec-
tion.

While all of the agents described in this section are simple, these
step-by-step exercises for constructing them will provide you with
the hand’s-on experience and training you need to get started build-
ing your own agents. This section covers most of the processes
involved in building agents including construction of object mod-
els, construction of basic agent behavioral rules, and execution and
debugging your completed agent. This section shows you how to
construct a number of related Hello World agents. Each successive
agent has increased functionality and uses more advanced tools in
the AgentBuilder toolkit.

In this step-by-step introduction you will build:

• ExampleAgent1 — agent with single rule that prints “Hello
World” to the built-in console window.

• ExampleAgent2 — agent that prints ‘Hello World’ to the console
once every 10 seconds, and variations on this agent that demon-
strate other aspects of AgentBuilder.
 – 80

• ExampleAgent3 — agent that demonstrates the incorporation of a
PAC into rules and the run-time creation of objects.

• ExampleAgent4 — agent that utilizes a GUI-based PAC and
demonstrates message passing between the user interface and
an agent.

• SimpleBuyer — agent that utilizes a GUI-based PAC and demon-
strates how a buyer can purchase a product from the least
expensive store agent.

• SimpleSeller — agent that utilizes a GUI-based PAC and demon-
strates how a store can respond to a buyer agent's request for a
product price.

Note that this section is not intended to completely describe all the
built-in functions, PACs, objects, tools, etc. in AgentBuilder, nor is
it intended to provide a tutorial on rule-based programming. You
should consult other sections of the User’s Guide and other refer-
ences to increase your understanding in these areas. This section
provides a starting point for acquainting you with many of the fea-
tures of AgentBuilder and shows you how to get started building
agents with this toolkit.
 – 81

 – 82

Chapter 5: Getting Started

5 – 83
C h a p t e r 5

Getting Started

Chapter Overview

You can find the following information
in this chapter:

• A Brief Introduction to AgentBuilder
• Quick Tour
• Building Agents Step by Step

Chapter 5: Getting Started
A. Introduction
This chapter provides an overview and introduction to the Agent-
Builder toolkit. The first section provides a quick tour of the com-
plete toolkit. This tour is designed to provide you with a brief
introduction to the major components of AgentBuilder and intro-
duce you to the agent construction process. This section is intended
to provide a broad overview of the tool and give you an overall idea
of the range of the tools, how they are used, and how they fit
together. Subsequent chapters in this document explain each of the
tools and the development process in more detail.

The AgentBuilder toolkit is a complex set of tools and requires an
understanding of the general theory of intelligent agents as well as
programming experience. While this guide cannot provide you with
programming experience it does provide all of the necessary theory
you will need to get started developing intelligent agents. After
reading this section, you will want to try building your own agents.
However, before doing so, we strongly urge you to read the rest of
this guide.

As you explore AgentBuilder, you may discover unfamiliar tools or
it may not be clear to you how to accomplish some task. Nearly all
of your questions will be answered by reading the documentation in
this user’s guide. Throughout the quick tour, you may encounter
cross references, terms, or concepts which are unfamiliar to you.
We recommend that you keep reading. Later chapters will explain
these concepts and terms in more detail.

Before starting, please read the following important section.

Menus, Combo-Boxes and Accumulators
AgentBuilder uses a variety of interface components. You should
understand how to use menu bars and pop-up menus as well as the
5 – 84

Chapter 5: Getting Started
functions of the various buttons on your mouse. In addition, Agent-
Builder uses a “Combo-Box” which is a special graphical compo-
nent that combines the features of a text edit field and a pull-down
menu.

Building Complex Patterns with the Accumulator
Paradigm
AgentBuilder provides a very powerful agent construction mecha-
nism that minimizes the amount of typing you must do. The actual
agent programming language is generated automatically by the
AgentBuilder tools. The objects and attributes you define in the
analysis phase of your project are reused by graphical editors.
These graphical editors are used to construct complex expressions
that give your agents useful behaviors.

AgentBuilder uses an accumulator paradigm for constructing com-
plex patterns and expressions. Several editors use an accumulator
text field to accumulate pattern components as you enter them, and
a pattern list to display the completed patterns (here “patterns” is
used in the generic sense and is not restricted to patterns on the left-
hand side of a rule). There is usually a row of buttons or pull-down
menus above an accumulator text field; these provide the pattern
components that you select for insertion into the accumulator. The
pattern list for the completed patterns is usually situated below the
accumulator text field. Figure 9 shows a portion of the Mental Con-
dition Rule Editor used in AgentBuilder. It provides a good example
of the use of the accumulator concept.

The normal sequence of operations is to specify the components of
the pattern (operators, variables, constant values, etc.) by using the
row of buttons above the accumulator, then click on the Add button
to the right of the accumulator text field. Clicking on Add will
5 – 85

Chapter 5: Getting Started
move the pattern from the accumulator to the associated pattern list.
Clicking on the New button will clear the accumulator text field.

In general, pattern components should be specified in a left-to-right
order. One important exception to this general rule is the ordering
for message conditions and mental conditions in the Rule Editor.
To build these conditions you should first specify the conditional

Figure 9. Accumulator Building Complex Patterns
5 – 86

Chapter 5: Getting Started
operator (e.g., EQUALS, <=, etc.) then specify the operands in left-to-
right order. For example, to build the message condition:

 (%message.performative EQUALS achieve)

you should first select EQUALS from the Operators pull-down
menu. This will fill the accumulator with the template:

 (<> EQUALS <>)

This template shows the operator and the <> slot markers which
indicate that you need to select two operands. In this case, you
would select %message.performative from the Defined Variable dia-
log (or first you may need to create the variable using the New Vari-
able dialog) then select achieve from the Values dialog. As you
select the operands the slot markers in the template will be filled in
with the operands from left to right. Finally, click on Add to trans-
fer the pattern from the accumulator to the message condition list
below the accumulator.

After the patterns are in the pattern list you can change the ordering
of the patterns by using the Up and Down buttons. Clicking on a
pattern in the pattern list will highlight the pattern and copy it into
the accumulator for modification (currently not implemented).
Clicking on the Up or Down button will move the pattern up or
down one slot in the list. You can delete a highlighted pattern by
clicking on the Delete button.

Variable Naming Conventions
We recommend the following naming convention for variable
names:

Use %name for KqmlMessage variables intended to bind to incom-
ing messages, e.g., %incomingMessage or %message.
5 – 87

Chapter 5: Getting Started
Use ?name for any variables intended to bind to objects in the
agent's mental model (including any stored KqmlMessage objects).
For example, a variable intended to bind to any String objects in the
mental model might be named ?string or ?s, or perhaps something
even more descriptive such as ?bookTitle. A variable intended to
bind to KqmlMessage objects stored in the agent's mental model (as
opposed to binding to incoming messages) might be named
?storedMessage.

Use $name for temporary variables or return variables. Temporary
variables store values, typically the result of a function, so they can
easily be used throughout the rule. For example, a temporary vari-
able $price_plus_tax might be used to store the value (?price +
(?price * 1.07)). Return variables store the value returned from
an action, e.g., $myIPAddress = GetHostAddress(). Temporary
variables and return variables differ from regular variables in that
regular variables get their values from the agent's mental model,
temporary and return variables get their values from statements in a
rule.

This name convention is only a suggestion; you're free to choose
whatever variable names you wish. As you build complex rules the
usefulness of a naming convention will become more apparent.
Note that not all tools are available in AgentBuilder Lite. For example, the
Agency Viewer tools and the Protocol Editor are not a part of the Lite prod-
uct.

Important Note about Version 1.4

Java Version 1.4 introduced several changes that may impact AgentBuilder
users. In particular, agent names can no longer have embedded blank char-
acters. For example, “Buyer Seller” is no longer a valid legal name. Instead,
use something like “BuyerSeller” or Buyer_Seller” for the agent name. If
you have constructed agents with embedded blank characters in the agent
name, you will have to rename them before using them with version 1.4 of
AgentBuilder.
5 – 88

Chapter 5: Getting Started
Java Version 1.4 also has problems with user names with embedded blanks.
If your user name is, for example, “John Doe” then running the Agency
Viewer will generate an error. This will likely be a problem only with Win-
dows users. Please see the ReadMe file that came with the distribution for a
solution for this problem.

B. Quick Tour
The way you start the Project Manager will depend on whether you
are on a Windows or UNIX machine. On Windows, the Project
Manager is accessible from the Start Menu. The default installation
folder is AgentBuilder Toolkit. The folder will be different if you
have specified an alternate folder under the Start Menu. Under the
AgentBuilder Toolkit folder, there is an AgentBuilder icon. Selecting
the AgentBuilder icon will start the Project Manager.

On UNIX, the AgentBuilder toolkit is installed in the directory
where the system administrator unpacks the AgentBuilder files.
Typically, the AgentBuilder toolkit will be installed in /usr/
local/AgentBuilder. As long as the AgentBuilder bin directory
is in your path, you will be able to start AgentBuilder by typing
agentBuilder at the UNIX prompt. You must also ensure that the
AGENTBUILDER_HOME environment variable is correctly specified if it
is not installed in the default location.

The AgentBuilder Project Manager is the first tool you will encoun-
ter in using the toolkit. The Project Manager provides you with an
overview of the agent development process and the agents you have
under development. Clicking on an item in the tree panel on the left
side of the tool will display a description for that item in the win-
dow on the right side of the tool. This window is called the
Description Panel. There are three types of objects displayed in the
left panel: projects, agencies, and agents. You can adjust the width
of the two panels by selecting the vertical bar that separates the
5 – 89

Chapter 5: Getting Started
panels and dragging it to the left or right. Figure 10 shows the
Project Manager.

The main use of the Project Manager is for creating and manipulat-
ing the items shown in the left panel. If you click on the HelloWorld
agent icon in the tree, the agent's properties will be presented in the
description panel.

Clicking on an agent and then selecting a tool causes the tool to
start and use the selected item. For example, if you click on the Hel-
loWorld agent (in the HelloWorld Agency) and then select the Agent
Manager (by clicking on the Agents tab) you will open the Agent
Manager and load the HelloWorld agent.

Figure 10. The AgentBuilder Project Manager
5 – 90

Chapter 5: Getting Started
Some of the tools are not available in the AgentBuilder Lite version
of AgentBuilder. For example, if you are using Lite you will not be
able to use the Protocol and Agency Managers.

The tree is a hierarchical structure made up of projects, agencies
defined for these projects, and the agents contained within each
agency. Projects can only contain agencies, and agencies can only
contain agents. All agents must be contained in an agency, includ-
ing projects with only a single agent. This containment policy is
enforced by the tool. To create new items in the tree, select the con-
tainer object (i.e., the project or agency) and then select New from
the File menu. You can do the same thing with a right mouse click
on the item and then select New Agent from the pop-up menu.
Both techniques have the same effect. The objects in red are
defined as read-only; this means they are examples provided with
the tool and cannot be modified. However, you will see how these
agents can be copied and then pasted into you personal projects
where you can modify them as desired.

The Examples Agents project folder you see contains agencies and
agents constructed for you. These are provided for learning and
demonstration. There are three example agencies: Hello World
Agency, Simple BuyerSeller Agency and the Quick Tour Agency.
Each of these contains example agents you can run and examine. It
is useful to note that an agent can belong to one or more agencies.
This means that the same agent may appear in multiple agency
folders. As an agent is modified, the modifications are global in
scope, i.e., they are applied across all agencies of which the agent is
a member. This is sometimes confusing to new developers using
the folder paradigm.We'll be examining the HelloWorld agents
again in this Quick Tour.
5 – 91

Chapter 5: Getting Started
The Defaults1 project folder contains the default agency and default
agent. The values of these are applied as default settings used by
the system when creating new agents and agencies. Examining
either of these will show you the defaults new agents are given at
creation time. These defaults are configurable.

Selecting the Edit Properties menu item will bring up a dialog
which will allow you to modify the various properties of the tool.
These properties include: the user's name, the user repository and
directories for tool-generated output, error logging information,
“look and feel,” font size, and colors for the foreground and back-
ground. The user repository is a persistent store where all of the
data structures created and used by the tool are stored.

There is also a right-click popup menu on the tree items that allows
you to copy, past, delete, run or edit an item depending on the char-
acteristics of the item.

1. The term defaults is used here in the sense of a default property value
inherited from a parent class.
5 – 92

Chapter 5: Getting Started
Ontology Manager
The Ontology Manager is designed to help you build ontologies for
your agents. An ontology is a specification of a conceptualization
and defines the domain knowledge needed by the agent to function
in its environment. To start the Ontology Manager, click on the
Ontologies tab while in the Project Manager. Figure 11 shows the
Ontology Manager window.

The Ontology Manager features a tree view showing all of the
ontologies you have created or imported. The Ontology Manager is
similar to the Project Manager in that clicking on one of the ontol-
ogy icons results in a display of information about the selected
ontology in the description panel. This information includes: the
developer’s description of the ontology, the ontologies that use this

Figure 11. The Ontology Manager
5 – 93

Chapter 5: Getting Started
ontology, the ontologies used by this ontology, and all axioms
defined for this domain.

Clicking on the Hello World Ontology causes the ontology proper-
ties to be displayed in the properties panel. To alter any of these
properties, right-click on an ontology and click on Properties….
This will bring up the Ontology Properties dialog shown in Figure
12. All information shown in this dialog can be edited.

The Ontology Properties dialog allows the user to edit descriptive
information about the ontology. When creating new ontologies you
must supply (as a minimum) the ontology name. The children, par-
ents, and axioms fields are described in the AgentBuilder Reference
Manual.

Figure 12. The Ontology Properties Panel
5 – 94

Chapter 5: Getting Started
Object Modeler
The Object Modeler is used for defining an object model for the
agent application domain. This tool is used to aid in developing the
classes for a particular domain. The classes represent entities or
concepts in the agent's domain that the agent can instantiate and
manipulate. The agent can invoke any of the methods specified for
a class in the object model.

The Object Modeler can be started by clicking on the Default Ontol-
ogy and then selecting the Object Modeler menu item (from the
Tools menu). The Object Modeler tool will be displayed and will
be preloaded with an object model for the selected ontology. The
Object Modeler loaded with the Default Ontology object model is
shown in Figure 13.

Figure 13. Object Modeler
5 – 95

Chapter 5: Getting Started
Double-click on the PacCommSystem object and the Object Proper-
ties dialog will appear. As shown in Figure 14, all of the methods
and attributes of the object are displayed. After you enter new
attributes and methods in this panel the agent can use them. The
object models built in the Object Modeler are imported into the
Agent Manager and used to define the objects in the Agent's
domain. Only the attributes and methods specified for a class in the
object model are visible in the agent tools.

New objects are created by moving the cursor into the object model
graphical window and right-clicking the mouse or by using the
New Object menu item in the Map menu pull-down of the Object
Modeler.

Figure 14. Class Properties for the Agent Class
5 – 96

Chapter 5: Getting Started
New objects can be created from existing Java class files. The
Object Modeler assists the user in importing existing class files. To
create an object based on an existing class file, click File Import
Class Files… and use the dialog to import classes by entering class
and package names in their appropriate text areas and clicking Add.
This allows you to skip the tedious work of entering object
attributes as well as ensuring that the method and attribute naming
is correct.

It should be noted that all attributes, parameters and return values
need to use their fully qualified class names (with the exception of
Java types).

The Ontology Manager also provides a Concept Mapper tool. This
tool is used for defining concepts and conceptual relations and is
discussed in detail in the AgentBuilder Reference Manual.

To close any of the tools, select Close from the File menu.

Agent Manager
The Agent Manager tool is used for constructing individual agents.
Start the Agent Manager from the Project Manager window by
selecting an agent (e.g., the HelloWorld agent) and then selecting the
Agents tab. The Agent Manager tool is shown in Figure 15.

You can only run a single Agent Manager at any given time. How-
ever, you can run the Agent Manager on any agent that you define
in the Project Manager. If you start the Agent Manager without
selecting an agent first, the tool will open with no agent. At this
point you can either create a new agent or load an existing one
using the File New or File Open… menu items. You can
safely modify any part of an agent without permanently changing it.
The agent's definition is only saved if you use the File Save
command.
5 – 97

Chapter 5: Getting Started
The Agent Manager is divided into several panels. The tabbed
panel on the left displays all the components of an agent. You can
examine the defined structures of the agent by clicking on the tab
for each one. Tabs allow you to display but not directly edit Prop-
erties, PACs, PAC Instances, Actions and Rules.

The Properties panel shows high-level information about the agent.
This includes the agent’s name, description, agencies and ontolo-
gies used, network location, the date created, author, and vendor.

Figure 15. The Agent Manager
5 – 98

Chapter 5: Getting Started
Some of this information is editable by clicking on the properties
item in the Edit menu.

Use the agent properties dialog for creating and defining a new
agent. To create an agent, select File New in the menu bar. The
resulting dialog allows you to edit properties and select an agency,
ontology and communication information for the agent. For exam-
ple, clicking on the Communications… button will display the
agent communication dialog. Figure 16 shows the HelloWorld com-
munications dialog.

The agent Communications Dialog allows you to specify the type of
communication to use and the specific attributes needed for that
type of communication. For example, the HelloWorld agent is using

Figure 16. Agent Properties
5 – 99

Chapter 5: Getting Started
RMI (remote method invocation) at port 3932 and is using the IP
address of the local host. By specifying the CURRENT_IP_ADDRESS
the user is telling the agent to use the network address of the host
computer. Each agent needs its own unique port number for com-
munications.

To examine any of an agent’s data items, click on the tab for it in
the tab panel. Figure 17 shows what a rule looks like in the Agent
Manager rule display. The Print Greeting rule is selected from the
list of rules. This causes the Print Greeting rule to be displayed in
the description panel. Double-clicking on an item brings up the
appropriate editor for that item.
5 – 100

Chapter 5: Getting Started
Figure 17. Agent Manager Rule Panel
5 – 101

Chapter 5: Getting Started
PAC Editor
Project Accessory Classes (PACs) are classes used by the agents.
PACs are analogous to the hands and eyes of an agent. They pro-
vide a mechanism that allows the agent to interact with its environ-
ment. The PAC Editor allows you to specify needed PACS and can
be started from the Agent Manager by clicking on the Tools
PAC Editor menu or by selecting the PAC tab in the Agent Manager
pane and double-clicking on a PAC name in the Agent Manager
window. Figure 18 shows the basic PAC Editor panel that will be
displayed.

The PAC Editor is used for defining and importing classes for the
agent. The PACs represent Java classes in the agent's domain. The
HelloWorld agent, for example, has several PACs. One of them is
the HelloWorldFrame PAC. This PAC is a class that the agent can
instantiate and manipulate. The agent can invoke any of the meth-
ods specified in the PAC definition.

All PACs are created from object models defined in an ontology.
You can import objects from the ontologies by selecting Import…
from the File menu in the PAC Editor. This pops up an Import dia-
log that is used to select the Object Model for importing. You can
either import all of the classes from an object model or a selected
subset of the classes. If the ontology changes, you can use the PAC
Editor for updating PACs. This dialog is invoked by selecting
Update… in the File menu.

You can create initial PAC instances using another view of the
PAC Editor. Click on the PAC Instances button at the top of the
window to get the PAC Instance Editor. Figure 19 shows the PAC
Instance Editor with the myHelloWorldFrame instance shown.

The PAC Instance Editor allows you to specify the PAC instances
which should be created at startup. These are used to define the
agent's initial mental model. You can use the pull-down menu
5 – 102

Chapter 5: Getting Started
located below the Description text field in the PAC Properties panel.
This menu is normally labeled <PAC> and can be used to select an
instance of interest. Clicking on the Initial PAC Instance check
box will bring up a Specify Attribute Values dialog and allow you to

Figure 18. The PAC Editor
5 – 103

Chapter 5: Getting Started
specify the values for the constructor of the initial PAC Instance.
For more information see the PAC Editor section of the Agent-
Builder Reference Manual.

Figure 19. The PAC Instance Editor
5 – 104

Chapter 5: Getting Started
Action Editor
The Action Editor is started by selecting the Tools Action Edi-
tor menu item in the Agent Manager or by selecting the Actions
tab item and then double-clicking on an action in the Agent Man-
ager window. The Action Editor is used to define the private
actions the agent can perform. Creating private actions is equiva-
lent to tagging a PAC method with a symbolic label. This is
accomplished by defining a name, picking a PAC, and choosing the
method. If the method is run(), then you can run the action on a
separate thread. The run-time system automatically handles this
threading. The Action Editor is shown in Figure 20.

Figure 20 also shows the definition of the Print action for the Hel-
loWorld agent. This action is mapped to the print method of the
HelloWorldFrame PAC.

Note that defining actions isn’t strictly necessary. You can directly
invoke methods on objects when specifying actions in rules.

Rule Editor
The Rule Editor is one of the key editors in AgentBuilder. It uses
the information specified in the other editors to define the behav-
ioral rules for an agent. The behavioral rules specify how the agent
interacts with its environment. All rules are specified as WHEN-
IF-THEN constructs. The WHEN and IF sections are conditions
that must be met before the THEN part of the rule is executed. The
WHEN applies to temporal events such as recently received mes-
sages. The IF applies to beliefs the agent has about its internal and
external environment. The THEN section specifies internal and
external actions the agent should take when the conditions are met.

The Rule Editor is started from the Agent Manager by selecting
Tools Rule Editor menu item or by selecting the Rules tab
panel and then double-clicking on a rule in the Agent Manager list.
The Rule Editor provides two different views. One view shows the
5 – 105

Chapter 5: Getting Started
left-hand side of a rule, and the second view shows the right-hand
side of a rule. Checkboxes labeled Left-Hand Side and Right-
Hand Side are provided in the Panel Options area of the editor. Fig-
ure 21 shows the Left-Hand Side panel of the rule editor. You can
toggle between the two views by clicking either of the buttons in
the Panel Options at the top of the window. The left-hand side
(LHS) allows you to specify the conditions for the rule. The right-
hand side(RHS) allows you to specify the actions performed when
the rule is executed.

Figure 20. Action Editor
5 – 106

Chapter 5: Getting Started
In this example, the left-hand side of the rule consists of several
patterns that test fields in an incoming message. If an incoming
message passes all tests on the left-hand side then the actions on the
rule's right-hand side will be executed. The Right-Hand Side panel
of the Rule Editor is shown in Figure 22. To view the other rules in
the HelloWorld agent, select the File Open menu item in the
Rule Editor.

The other rules in the HelloWorld agent have elements that condi-
tion on new messages arriving in the agent. To see another rule,
select the File Open menu item from the Rule Editor and then
double-click on the desired rule in the dialog list.

Figure 21. Rule Editor Showing LHS of the Print Greeting Rule
5 – 107

Chapter 5: Getting Started
Running the HelloWorld Agent
RADL files are produced by the AgentBuilder construction pro-
cess. All of the information needed by an agent for execution is
encoded in its RADL file with the exception of the agent’s PACs.
PACs are Java class files and must be in the system CLASSPATH.
You can generate the RADL file for an agent by selecting Options

 Generate Agent Definition menu item in the Agent Manager.
A file dialog will be displayed, and you can enter the name and
location of the RADL file. Once this information is entered, subse-
quent RADL generation will default to the same name and location.
Figure 23 is a partial RADL file listing for the HelloWorld agent.

Figure 22. Rule Editor Showing RHS of Print Greeting Rule
5 – 108

Chapter 5: Getting Started
AgentBuilder version
Using Reticular Agent Defintion Language Formating
Copyright Reticular Systems Inc.
Agent Name: HelloWorld
Agent Description: Hello World agent with a full GUI and demonstrating
connections between the agent and the user interface.
Agencies belonged to:
["Hello World Agency"]
==
ABBREVIATED NAMES
(HelloWorldFrame com.reticular.agents.helloWorld.HelloWorldFrame)
==
INITIAL OBJECTS
==
ACTION DEFINITIONS
(Start SEPARATE_THREAD PAC_OBJECT HelloWorldFrame <>)
(Print PAC_OBJECT HelloWorldFrame <> PAC_METHOD print (String))
==
CAPABILITIES
==
BELIEF TEMPLATES
==
INITIAL BELIEFS
==
INITIAL AGENCY BELIEFS
(SELF "HelloWorld" [CURRENT_IP_ADDRESS] [RMI:2010] [] ["Hello World Agency"])
(AGENCY_TOOL "null" [harding.reticular.com] [RMI:2000] [] ["Hello World Agency"])
REMOTE_AGENTS
==
INITIAL COMMITMENTS
==
INITIAL INTENTIONS
==
BEHAVIORAL RULES
("Print Greeting"
WHEN
(OBJ [MVAR KqmlMessage<%incomingMessage>.sender] EQUALS [VAL String "HelloWorld:PAC"])
(OBJ [MVAR KqmlMessage<%incomingMessage>.performative] EQUALS [VAL String "achieve"])
(OBJ [MVAR KqmlMessage<%incomingMessage>.contentType] EQUALS [VAL Class String])
(OBJ [MVAR (String)(KqmlMessage<%incomingMessage>.content)] EQUALS [VAL String "Say Hello"])
IF
THEN
(DO Print([SFUNC Concat([VAL String "HelloWorld! the time is: "] [INST Time<current-
Time>.string])]))
(DO SleepUntilMessage()))
("Build HelloWorldFrame"
WHEN
IF
(BIND [INST Time<startupTime>])
THEN
(ASSERT ([VAL String "myHelloWorldFrame"] [NEW HelloWorldFrame (PacCommSystem [NEW PacCommSystem
(AgentInfo [INST Agent<SELF>.agentInfo]) (String [VAL String "HelloWorld:PAC"])])])))
("Quit"
WHEN
(OBJ [MVAR KqmlMessage<%incomingMessage>.sender] EQUALS [VAL String "HelloWorld:PAC"])
(OBJ [MVAR KqmlMessage<%incomingMessage>.performative] EQUALS [VAL String "achieve"])
(OBJ [MVAR KqmlMessage<%incomingMessage>.contentType] EQUALS [VAL Class String])
(OBJ [MVAR (String)(KqmlMessage<%incomingMessage>.content)] EQUALS [VAL String "Quit"])
IF
THEN
(DO ShutdownEngine()))
("Launch Interface"
WHEN
IF
(BIND [INST HelloWorldFrame<myHelloWorldFrame>])
THEN
(DO ConnectAction([VAL String "Print"] , [INST HelloWorldFrame<myHelloWorldFrame>]))
(DO ConnectAction([VAL String "Start"] , [INST HelloWorldFrame<myHelloWorldFrame>]))
(DO Start())
(DO RemoveRule([VAL String "Build HelloWorldFrame"]))
(DO RemoveRule([VAL String "Launch Interface"]))
(DO SleepUntilMessage()))

==

Figure 23. AgentBuilder RADL File Listing
5 – 109

Chapter 5: Getting Started
After you've created an agent you'll want to run it. There are three
ways that agents can be started. You can invoke the Run-Time sys-
tem by selecting the Options Run Agent menu item in the
Agent Manager, you can run the agent from the Project Manager, or
you can invoke the Run-Time system directly and specify an exist-
ing RADL file. For instructions on how to directly invoke the Run-
Time system, please see the Run-Time System section of the
AgentBuilder Reference Manual.

Selecting Run Agent starts the agent execution. A file dialog will
query you for the file name and location of the RADL file. The tool
then generates the RADL file and passes it to the Run-Time system.
The next dialog you’ll see is the run-time system Agent Engine
Options dialog. This dialog will allow you to specify run-time
options before starting the agent. Figure 24 shows the dialog. After
setting run-time options, click on OK. This will start the Run-Time
system, parse the RADL file, start execution of the agent engine,
and display an engine console. For the HelloWorld example, the
Hello World dialog is displayed.

The engine console allows you to view the output from the Run-
Time system and terminate or reset the agent. Figure 25 shows
both the engine console and the HelloWorldFrame interface.

The top panel of the console contains a text area that allows you to
view output that is directed to standard out. You can freeze, save or
clear the panel as desired. The lower text panel is a window for
error display. The Exec menu allows you to stop the engine as well
as restart it.

The other window shown in the example is the HelloWorldFrame
interface. This is displayed as a result of the Start private action.
By clicking on the Say Hello button or the Quit button you can
interact with the agent. Clicking on this panel’s Say Hello button
5 – 110

Chapter 5: Getting Started
causes the Print rule to be executed. Clicking on Quit button
causes the Quit rule to be executed.

Select the File Reset menu item in the console to restart the
agent and redisplay the HelloWorldFrame. Select the File Quit
menu item from the console's File menu to close the console and
terminate the agent and its run-time system.

On-Line Help
AgentBuilder provides an on-line help system. This help system
provides on-line documentation that you can access while using the
various AgentBuilder tools. Figure 26 below shows the Help
viewer. The help system is organized as a series of HTML pages.
You can navigate the help system using your default web browser.

Figure 24. The Agent Engine Launcher Dialog
5 – 111

Chapter 5: Getting Started
Overview of Typical Agent Development
Agent-based systems development is a complex and iterative pro-
cess. Like most software engineering processes, the developer must
first develop a problem description. The next step is the problem
and domain analysis. AgentBuilder provides the ontology tools to
assist the user in developing concept maps and object models of the
agent’s domain. Several different ontologies may be required to
capture this knowledge.

Once these first steps are completed the design phase begins. This
involves decomposing the system into agencies and agents and
assigning responsibility and functionality for each agent. Some-

Figure 25. AgentBuilder Engine Console and HelloWorld Frame
5 – 112

Chapter 5: Getting Started
times several different agencies may be required. After the agencies
and agents are defined, the agent interaction protocols must be
specified. This involves deciding how information and commands
are processed and communicated.

The next phase is the detailed design of the agents. At this stage, the
PACs required by each agent must be fully defined. This step usu-

Figure 26. AgentBuilder Help Viewer
5 – 113

Chapter 5: Getting Started
ally requires refining the ontologies developed in the analysis
phase. If PACs have been developed previously, then the devel-
oper must import them into object models.

At this point, the developer is ready to write the agent’s behavioral
rules. This is typically the most challenging part of the agent con-
struction processes. It may take several iterations of development
and debugging to get the rules to function properly. The rules must
process incoming messages, generate outgoing messages, perform
appropriate actions, and update the internal mental state of the
agent.

The development process described here is not a precise recipe but
consists of general guidelines that we have found to be useful.
Sometimes it's appropriate to iterate or skip various steps during the
development process. For more detailed information on the agent
development process see the section entitled “Agent Development
Process” on page 71.
5 – 114

Chapter 6: Building Simple Agents - Example Agent 1

6 – 115
C h a p t e r 6

Building Simple Agents -
Example Agent 1

In this chapter you will learn how to:

• Create a Project
• Define an Agency
• Create an agent for that agency
• Create a behavioral rule for the agent
• Run your simple agent and examine

the output

Chapter 6: Building Simple Agents - Example Agent 1
This example shows you how to create a simple agent that says
“Hello World.” This simple agent requires only a single behavioral
rule. The steps for constructing this simple agent are detailed in
Table 6.

Step 1. Create Hello World Project and Agency.
Before creating an agent you must first create a project for manag-
ing the agent development process. The first window you see after
starting AgentBuilder is the Project Manager window (Figure 27).
The projects shown in red are system resources provided by Acro-
nymics, Inc. and should not be modified. However, AgentBuilder
makes it easy for you to copy agents and reuse the portions of the
agent that are most useful to you.Create a project by selecting the
File New menu item. This will display the Project Properties
Dialog box. Enter the project name and description as shown in Fig-

Table 6. Building the Hello World Agent

Step Description

1. Create the Hello World Project

2. Create the Hello World Agency

3. Create the Skeletal Agent

4. Create the Agent’s Behavioral Rule

a. Define the Rule in the Rule Editor

b. Create the LHS Pattern

c. Create the RHS Action

5. Create the RADL

6. Run the Agent
6 – 116

Chapter 6: Building Simple Agents - Example Agent 1
ure 28. After entering the name Quick Tour Project and a
description of the project, click on the OK button. This will create a
new project folder in the left panel of the Project Manager window
with the name you specified.

Step 2. Creating the Hello World Agency
Now select the Quick Tour Project folder icon. Note that when the
Quick Tour Project is selected, the previously entered information is
displayed in the right panel. With the Quick Tour Project selected,
click on the right mouse button (i.e., right-click). This will display a
pop-up menu from which you can select the New Agency pop-up

Figure 27. Project Manager Window
6 – 117

Chapter 6: Building Simple Agents - Example Agent 1
menu item. This will display an empty Agency Properties Dialog
where you can enter the name of the agency (e.g. Quick Tour
Agency) as well as a short description of the agency (i.e. its pur-
pose, the scope of the agents, the type of agents, etc.). Fill out this
dialog as shown in Figure 29. Click OK in the dialog to save the
information.

Figure 28. Project Properties Dialog

Figure 29. Agency Properties Dialog
6 – 118

Chapter 6: Building Simple Agents - Example Agent 1
Step 3. Create Your First Hello World Agent
Now that you have created an agency, you can populate it with the
necessary agents. To create your first Hello World agent, select the
Quick Tour Agency in the left panel of the Project Manager and then
select the File New menu item. This will cause the Agent Prop-
erties dialog window (Figure 30) to appear. An alternate technique
is to click on the right mouse button and choose New Agent from
the popup menu. You can also edit agents by selecting the Edit
option from the popup menu.

Enter the agent’s name (in this case, ExampleAgent1) as well as a
description of the agent, the author’s name, and your company
name. Other agent properties can be set using the three buttons
near the bottom of the dialog (Agencies…, Ontologies…, Com-

Figure 30. Agent Properties Dialog
6 – 119

Chapter 6: Building Simple Agents - Example Agent 1
munications…); we will discuss the use of these buttons later. For
more information on these buttons see the description in the Agent-
Builder Reference Manual. Click on the OK button to save the
basic properties for this agent (this may take a few seconds depend-
ing on the speed of your computer). The Project Manager should
now look like the example shown in Figure 31.

Step 4. Create the Agent’s Behavioral Rules
Now we can create a rule for the agent so it can print out “Hello
World.”

Figure 31. Project Manager Window
6 – 120

Chapter 6: Building Simple Agents - Example Agent 1
Step 4a. Start the Rule Editor
To define the behavior of any agent, you must first open the Agent
Manager. The Agent Manager is the primary tool for configuring
and defining an agent’s behavioral rules and capabilities. Open the
Agent Manager by selecting ExampleAgent1 in the Project Manager
window and then selecting the Agents tab. The system will display
the Agent Manager dialog for ExampleAgent1 as shown in Figure
32.

Using this window, you can launch the various editors (Action,
Commitment, PAC, and Rule) used for configuring the agent. For
this simple agent, we need to create only a single rule. Select Tools

Figure 32. Agent Manager Window for the ExampleAgent1
6 – 121

Chapter 6: Building Simple Agents - Example Agent 1
 Rule Editor from the Agent Manager menu bar. This will dis-
play a window as shown in Figure 33.

Now select File New New Rule and enter the name of the
rule and a rule description in the Rule Properties Dialog. This dialog
is shown in Figure 34. For this example, call the rule Hello and
enter any description you like. For this agent, there are no message
conditions and therefore the LHS pattern will consist of only a sin-
gle mental condition.

Step 4b. Create LHS Pattern
For this agent, we need to create a rule that will print “Hello World”
to the console when the agent starts executing. To do this, create a

Figure 33. Rule Editor for ExampleAgent1
6 – 122

Chapter 6: Building Simple Agents - Example Agent 1
Left-Hand Side (LHS) pattern that matches with the starting time of
the agent engine.

A rule cannot fire (i.e., execute it’s right-hand side) unless it has at
least one LHS pattern that matches a new belief in the agent’s men-
tal model. We want a simple rule that will fire during the first
engine cycle, therefore we want to write a LHS pattern that we
know will be satisfied by a belief in the mental model at engine
start-up. The Run-Time System automatically creates a Time
instance named startupTime, and stores it into the mental model. A
BIND startupTime pattern will look for a Time instance named
startup in the mental model. The pattern will be satisfied if such an
instance is found, and so the rule will be fired.

Using the Rule Editor, select BIND from the Operators pull-down
menu in the Conditions panel of the Rule Editor. After performing
this operation, the text field below the pull-down menu contains the
string (BIND <>). This text field is used to accumulate the pattern as
you construct it. See “Building Complex Patterns with the Accu-
mulator Paradigm” on page 85 for a more detailed explanation of
using the accumulator.

Now we want the pattern to bind to a built-in instance called star-
tupTime.You can access this instance using the Instances... button.

Figure 34. The Rule Properties Dialog
6 – 123

Chapter 6: Building Simple Agents - Example Agent 1
After clicking on this button you will see a dialog as shown in Fig-
ure 35. This dialog shows the current Instances available. Select

the startupTime item in the PAC Instances dialog (i.e., select the
folder labeled Time startupTime) and then click on the OK button.
The Condition text field will now contain (BIND startupTime). This
completes the pattern so you can now click on the Add button
located below the Conditions text area. The Rule Editor will add
this pattern to the list in the Mental Conditions panel.

Step 4c. Create RHS Action
Select the Right-Hand Side tab of the Rule Editor to define the
action for our Hello rule. For this rule, we wish to utilize a built-in
action, SystemOutPrintln, to print a string to the console device.
To invoke this action, select SystemOutPrintln from the <Built-in
Actions> pull-down menu. This will fill in the Actions text field

Figure 35. Instance Dialog
6 – 124

Chapter 6: Building Simple Agents - Example Agent 1
with DO SystemOutPrintln(<Output>). Now, all you have to do is
specify the string to print out. To do this, select String from the
<Value> pull-down menu. The system will display a Value Dialog
(Figure 36). Now enter the string Hello World into the Literal
Value text field and click on OK.

Now add the action to the list of Definded RHS Elements displayed
at the bottom of the Rule Editor by clicking on the Add button
located below the Actions text area. The window will now look
like that shown in Figure 37. Now select File Save from the
Rule Editor menu bar to save both the LHS and RHS elements of
the rule. The Rule Editor will now display the Hello rule we have
just defined.

Step 5. Create the RADL file.
Once all the rules are created (in this case there is only one rule),
you must generate a RADL file for use by the run-time agent
engine. You use the Agent Manager to control generation of the
RADL file. You can quickly navigate back to the Agent Manager
by selecting Windows Agent Manager: ExampleAgent1 in the
Rule Editor menu bar.

Figure 36. Values Dialog
6 – 125

Chapter 6: Building Simple Agents - Example Agent 1
To generate the RADL file, select Options Generate Agent
Definition... from the Agent Manager window. The Agent Manager
will then display a file dialog as shown in Figure 38. You can now
save the RADL file in a directory of your choice. Clicking on the
Save button will generate and save the required agent’s RADL file
to your hard disk. A dialog box will be displayed informing you
when you have successfully generated the RADL file. Typically,
this step can be skipped since performing Step 6 automatically cre-
ates the RADL file.

Step 6. Run the Agent.
You are now ready to run the agent. Select Options Run Agent
from the Agent Manager menu. AgentBuilder will display a file

Figure 37. Rule Editor Window After Entering RHS Information
6 – 126

Chapter 6: Building Simple Agents - Example Agent 1
manager dialog (Figure 38) that allows you to select a RADL file to
be executed in the agent engine. Note that the Run Agent com-
mand automatically creates a new RADL file.

After you select the proper RADL file, click on the Save button.
You can then choose the Option Run Agent... menu item and you
will be presented with the file chooser dialog. After selecting the
file, the Agent Engine Options dialog shown in Figure 39 will be
displayed. This dialog presents several options which you can use
to specify the format of the agent’s output data display. To see all
available agent output, select the Verbose Options Everything
item and click on the OK button.

After a few seconds, the system will display the agent engine con-
sole window as shown in Figure 40. Since we selected the verbose
option in the Agent Engine Options dialog, each cycle of the engine

Figure 38. File Dialog for Saving RADL File
6 – 127

Chapter 6: Building Simple Agents - Example Agent 1
is displayed along with the rule fired, the action performed, and
current beliefs.

You can cancel verbose mode selection by selecting Exec Set
Engine Options and then selecting Verbose Options Clear
Verbose Options and clicking on the OK button. This will restart
the agent engine and display the agent engine console shown in
Figure 41. The Program Output option in the Agent Engine
Options panel allows you to suppress printing or route the Hello
World output string to a file or to the standard output stream on your
system (typically the screen).

Figure 39. Agent Engine Options Window
6 – 128

Chapter 6: Building Simple Agents - Example Agent 1
Note that closing the panel does not shut down the run-time system.
Select File Exit to shutdown the runtime system.

Figure 40. Agent Engine Console Window in Verbose Mode
6 – 129

Chapter 6: Building Simple Agents - Example Agent 1
Figure 41. Agent Engine Console Window in Non-Verbose Mode
6 – 130

Chapter 7: A More Complex Agent (Example Agent 2)

7 – 131
C h a p t e r 7

A More Complex Agent
(Example Agent 2)

In this chapter you will learn how to:

• Create a new agent by copying an old
one

• Modify rules to change behavior
• Set and test the mental conditions of

the agent
• Create Java objects and reason using

them

Chapter 7: A More Complex Agent (Example Agent 2)
This section describes the creation of a series of agents that are
based on our previous example but have additional features that
demonstrate other aspects of agents you can build using Agent-
Builder. The next agent we build (ExampleAgent2) uses a single
rule that will fire repeatedly and print the string Hello World fol-
lowed by the current time at 10 second intervals.

This example shows the process that is typically used in developing
an agent. We will reuse the previous agent (ExampleAgent1) by
modifying its rule and running and testing it again. AgentBuilder
makes it easy to reuse agents. The steps used in this process are
detailed in Table 7.

Table 7. Creating Agents by Modifying Behavior

Step Description

1. Copy Previous Agent

2. Alter Existing Rules

a. Open the Rule Editor with Old Rule

b. Alter the LHS

c. Alter the RHS

3. Run the Agent
7 – 132

Chapter 7: A More Complex Agent (Example Agent 2)
Step 1. Copy Previous Agent
The easiest way to create our new agent is to modify the agent we
previously constructed (ExampleAgent1). Open the Project Man-
ager by clicking on the Projects tab and selecting a previously cre-
ated agent (in this example, ExampleAgent1). Now, right-click on
the selected agent and select Copy from the pop-up menu. This
will copy our initial agent into a temporary holding area. Now
select the Quick Tour Agency, right-click on it, and select Paste
Agent. This will create a new agent that is an exact duplicate of the
initial agent. The new agent’s name is pre-appended with CopyOf.
To rename this agent, select the copied agent in the Project Man-
ager, right-click on it, and select Properties… from the pop-up
menu. You can now change the name of this new agent to
ExampleAgent2 and alter the description as required. After updat-
ing, click on the OK button. Note that the name and description of
the agent are displayed in the right panel when the Example Agent
2 is selected in the right panel (Figure 42).

Step 2. Alter Rule to Run Continuously
We need to alter the rule to make it fire repeatedly. The initial
startupTime object is used for matching for the first cycle of the
engine. However, after the first cycle that object is no longer a new
object and will not trigger the rule again. This is referred to as
refraction and is a property of rule-based systems that prevents a
rule from firing unnecessarily. We want to match against an object
that changes every cycle so that refraction will not prevent our rule
from firing. We utilize the currentTime object to accomplish this.

Step 2a. Open the Rule Editor with Hello Rule Loaded
To change the rule, we must use the Rule Editor. To open the Rule
Editor for ExampleAgent2 select the agent in the Project Manager
pane, click on the Agents tab in the Project Manager pane and then
7 – 133

Chapter 7: A More Complex Agent (Example Agent 2)
select the Rules tab on the left panel of the Agent Manager pane.
When the Rules tab is selected, the rule Hello will be displayed in
the middle panel. When you double-click on the Hello rule, the
Rule Editor is started with the Hello rule loaded. Note that when
the Hello rule is selected in the Agent Manager, the right-hand
panel displays the description and summary for the selected rule.
Note that the name of the rule you are working on is displayed in
the title bar of the Rule Editor.

Step 2b. Alter the LHS Pattern
Since we want this rule to fire repeatedly, we need to remove the
(BIND startupTime) pattern and replace it with (BIND currentTime).
Since the currentTime (built-in) instance is updated every cycle,

Figure 42. Copying Agents in the Project Manager
7 – 134

Chapter 7: A More Complex Agent (Example Agent 2)
this rule will fire every cycle rather than one time based on the sin-
gle match with the startupTime instance (which only matches on
the first cycle). First, select the pattern (BIND startupTime) in the
Mental Conditions list at the bottom of the Rule Editor window.
Then click on the Delete button on the right side of this text area.
The selected pattern will be removed. Note that the rule changes are
not final until you perform a Save operation. Click on the New but-
ton below the Conditions text area to clear the accumulator line. To
create the new pattern, select <Operators> BIND and then click
on the Instances… button. From the Instances Dialog select the
folder currentTime and click on the OK button. Your new pattern is
now complete and can be added to the list of patterns by clicking on
the Add button below the text field. Alternatively, you can just
replace the startupTime instance with the currentTime. You do this
by clicking on startupTime in the accumulator and then inserting
the currentTime instance in the accumulator.

You can modify the description of the rule by selecting Edit
Properties from the menu bar and entering the appropriate infor-
mation in the Rule Properties dialog. When you have completed
these activities the Rule Editor will look as shown in Figure 43.

Step 2c. Modify the RHS Elements
To modify the RHS of the Hello rule, simply click on the Right-
Hand Side tab of the Rule Editor. Like the LHS, you need to delete
the single RHS element (that was copied from the first agent) listed
at the bottom of the Rule Editor by selecting the RHS element and
clicking on the Delete button on the right. Clear the Actions panel’s
accumulator text field by clicking on the New button. To enter the
new RHS actions, select <Built-in Actions> SystemOut-
Println.

Now we need to inform AgentBuilder about the string we wish to
print. For this modified agent, we want to print “Hello World” fol-
7 – 135

Chapter 7: A More Complex Agent (Example Agent 2)
lowed by the current time. This will allow us to see how much time
has elapsed between the print actions. To accomplish this, we must
concatenate the string “Hello World” with a string representing the
current time. This can be accomplished by selecting <Operators>

 Concat (in the Actions panel) to add the Concat function to the
RHS action. You need to supply the two strings that are to be con-
catenated in the Concat parentheses. To enter the first string, select
<Value>->String and enter Hello World: in the Value Dialog win-
dow. The second string is supplied by the built-in currentTime
object. This can be accessed by clicking on the Instances… button
and then clicking on the small button located next to currentTime.
This will display the variables available within the currentTime

Figure 43. Rule Editor Window After Modifying LHS
7 – 136

Chapter 7: A More Complex Agent (Example Agent 2)
object. In this case, select String string (which is the text represen-
tation of the current time) and then click on the OK button. This
completes the print message; we can now add the action to the
Defined RHS Elements list by clicking on the Add button.

To prevent the agent from printing continuously, we will place a 10
second sleep action into the RHS. To do this select <Built-in
Actions> Sleep and then enter the integer value 10 by selecting
the <Value> Integer item and entering 10 into the Value Dialog
box. Now using the Add button, add this to the RHS actions and
save the rule changes by selecting File Save. The Rule Editor
should now look as shown in Figure 44.

Step 3. Run the Agent
Before running the agent go to the Agent Manager window and
select File Save to save the agent. Now select Options Run
Agent from the Agent Manager. You will get a file dialog prompt-
ing you for a location to save the RADL file. Since you copied
ExampleAgent1, the default filename for saving the RADL infor-
mation is also ExampleAgent1. Change the filename to
ExampleAgent2. After you dismiss this dialog by clicking on Save,
an Agent Engine Options panel will appear. You can clear the ver-
bose options using the Verbose Options pull-down menu in this
dialog.

Click on OK to start the engine. You should see output like that
shown in Figure 45. There will be approximately 10 seconds
between each printout. This can vary by ±2 seconds depending on
the speed of your processor. Note that you can freeze the display
output of the engine by clicking on the Freeze button. However,
this does not stop the agent engine. The agent will continue run-
ning, and its output text will be stored in the console and displayed
when you click on the Resume button. The agent will continue to
7 – 137

Chapter 7: A More Complex Agent (Example Agent 2)
output text which will be displayed when you click on the Resume
button. You can halt the agent engine by selecting Exec Termi-
nate Engine from the menu bar.

Step 4. Adding Rules to Change Agent Behavior
Now let’s alter the Hello rule and add an additional rule to stop exe-
cution after a single printout of “Hello World” while still triggering
on the currentTime object. To do this, open the Rule Editor from
the Agent Manager window by selecting the Hello rule and then
selecting Tools Rule Editor. For this version of our agent we

Figure 44. Rule Editor Window After Modifying RHS
7 – 138

Chapter 7: A More Complex Agent (Example Agent 2)
need to insert an ASSERT command in the RHS. Click on the Right-
Hand Side tab.

Step 4a. Alter Hello rule’s RHS
We want to assert a string (or more generally, a belief) into the
mental state of the agent and then use that belief to trigger another
rule to shutdown the agent engine. To assert a new belief, select
<Operators> ASSERT (in the Actions panel). An Assert Dialog

Figure 45. Agent Engine Console Window for Modified Agent
7 – 139

Chapter 7: A More Complex Agent (Example Agent 2)
then prompts you to enter a name for the object being asserted.
Enter PrintFlag as the name and click on OK. We now need to tell
the agent what kind of object and the contents of that object that are
to be asserted. In this case, we want to assert a String object with a
value of “Quit Printing Now.” Use the <Value> pull-down menu
and select String and then enter the String “Quit Printing Now” in
the Value Dialog. Now click on the Add button and then save the
changes to the rule. The Rule Editor will look like Figure 46.

Step 4b. Create new Quit rule’s LHS
Now let’s create a rule that will be triggered by the PrintFlag
belief. First go back to the LHS of the current rule by selecting the
Left-Hand Side tab on the Rule Editor. Select File New New
Rule... from the menu bar. This will clear everything in the Rule

Figure 46. Rule Editor Window with Added Assertion
7 – 140

Chapter 7: A More Complex Agent (Example Agent 2)
Editor and allow you to enter a completely new rule into the agent
without deleting the current rule. Name the rule Quit and put a
short description into the description part of the Rule Properties
panel.

For the LHS of the Quit rule, we want to create a mental condition
that will test for the string that was asserted into the mental state by
the Hello rule. We must create a variable that can find any instance
of a string in the mental state. To do this, click on the New Vari-
able… button. This will display the New Variable window as
shown in Figure 47. Since we want to detect a string we must first
click on the Java Types tab in the top panel of the window. Now
select the String class from the Java types listed in the Java Types
panel. Next, enter a variable name (e.g. ?str) in the text field
below the list1. You can add this variable to the list of variables at
the bottom of the dialog window by clicking on the Add button on
the right of the Variable Name text field. Click on the OK button to
confirm entry of this new variable. All we have done is define the
new variable. There have been no changes made to the Rule Editor
at this point.

We are now ready to perform an EQUALS comparison between all
Strings in the agent’s mental state and the string Quit Printing
Now. Do this by selecting <Operators> EQUALS from the Con-
ditions panel. We can now use the variable that we created in the
previous paragraph by clicking on the Defined Variable… button.
This will display the Defined Variable dialog shown in Figure 48.
You can select the proper variable by clicking on the Java Types
tab at the top of the window and then select the ?str variable
(which should be of type String). Clicking on the OK button will

1. It is common practice in rule-based languages to represent variable names
by preceding the variable name with a “?”; e.g., ?variable. See “Vari-
able Naming Conventions” on page 87.
7 – 141

Chapter 7: A More Complex Agent (Example Agent 2)
enter this variable into the EQUALS pattern. The second slot can be
filled in by selecting <Value> String menu item and filling in
the string we wish to match (i.e. Quit Printing Now). Note that
the string you use in this pattern must exactly match the string
asserted by the Hello rule. Any difference in spelling, spacing, or
capitalization will prevent the pattern from matching. Click on OK
to dismiss this dialog. Now click on the Add button and then save
the results by selecting File Save from the menu bar.

Figure 47. New Variable Dialog
7 – 142

Chapter 7: A More Complex Agent (Example Agent 2)
Step 4c. Create the New Quit rule’s RHS
Select the Right-Hand Side tab in the Rule Editor. When the Quit
rule fires, we want to halt the agent engine. Fortunately there is a
built-in action to do this (<Built-in Actions> Shutd-
ownEngine). Add this action to the RHS elements by clicking on
the Add button and then save the Quit rule. Viewed using the Agent
Manager, the rule will appear as shown in Figure 49.

Step 5. Rerun Agent
Now run the agent with the new rules in place by selecting Options

 Run Agent from the Agent Manager menu bar. You will be
presented with a dialog for saving the RADL file, and then the
Agent Engine Console will appear. Set your desired agent engine
options and click OK to run the agent. You should see output like
that shown in Figure 50. Note that the agent actually printed the

Figure 48. Defined Variable Dialog
7 – 143

Chapter 7: A More Complex Agent (Example Agent 2)
Hello World message twice! There is a warning about replacing an
existing named instance! Why?

In the first cycle, only the Hello rule fires. However, in the second
cycle (after the 10 second sleep) both the Hello rule and the Quit
rule fire before the engine shuts down. Thus, the PrintFlag
instance is asserted twice, hence the warning. Also, since the Shut-
downEngine action happens at the end of the cycle, the Hello rule
fires a second time.

To prevent this we need to modify the LHS of the Hello rule. Open
the Hello rule by selecting File Open and then select Hello from
the Open Rule Dialog and click on the OK button. Figure 51 shows
one solution using the EXISTS operator. See if you can duplicate it
in the Rule Editor by following the sequence of steps in Table 8.

Figure 49. Viewing Rules Using Agent Manager
7 – 144

Chapter 7: A More Complex Agent (Example Agent 2)
Rerun the agent to ensure that only a single Hello World output is
printed. The sequence of steps to create this pattern is shown in
Table 8.

Figure 50. Running the Agent
7 – 145

Chapter 7: A More Complex Agent (Example Agent 2)
You can run the agent now to ensure it operates as you wish.

Step 6. Add Initial Objects.
Now we want to add some initial object so that the agent prints out
three messages and then quits. To do this we first need to create
two initial objects, currentCount and targetCount. (Note that vari-
ables and instances may have spaces embedded in their names.
However in most cases, for the sake of readability, we recommend
using currentCount or current_count in place of current count.)
We will then modify the Hello rule’s RHS to update the current-
Count object and then modify the Quit rule to see if the current
count has reached the target count.

Step 6a. Create Initial Objects
To create an initial object, select Tools PAC Editor from the
Agent Manager menu bar. Select the Java Instances tab at the top
of the PAC Editor window. The first object we create, current-
Count, will be of type Integer and initialized with a value of 1.

Table 8. Rule Creation (in Mental Conditions)

Step Instructions

1. Select <Operators> NOT

2. Select <Operators> EXISTS, 1 quantified vari-
able

3. New Variable, Java Type String, name ?str

4. Defined Variable, Java Type, ?str

5. Select <Operator> EQUALS

6. Defined Variable, Java Type, ?str

7. <Value> String, “Quit Printing Now”
7 – 146

Chapter 7: A More Complex Agent (Example Agent 2)
Enter the name currentCount in the Name text field inside the
Java Instance Properties panel. Also enter a short description of the
instance and click on the Enter button. Select <Java> Integer
in the pull-down menu and click on the Initial Java Instance check
box, then enter a 1 in the initial value text field. Finally add this
instance to the Defined Java Instances list by clicking on the Add
button next to the text field. Now, click on Add in the Defined Java
Instance panel and the value will be entered in the Defined Java
Instances text field. Repeat this process for the targetCount Java
instance, with a 3 as the initial value. Now save the initial objects
using the File Save menu item. At the completion of this pro-
cess you should have a window that looks like Figure 52.

Step 6b. Alter the Hello rule’s RHS.
We now need to modify the Hello rule’s RHS so that it will update
the current count every cycle. To do this open the Rule Editor with
the Hello rule loaded and select the RHS editor. Delete the ASSERT
action in the Define RHS Elements list. Click on the New button in
the Actions panel to clear the Actions text field. Click on the
SET_VALUE_OF operator from the <Operators> pull-down menu.
Now, to increment the value of currentCount by one, click on the
Instances... pull-down menu and add the currentCount instance (in
the Java Instances tab panel). This indicates that the currentCount
is the instance to be incremented. Now we wish to increment the
currentCount by 1, so select the + operator from the <Operators>
pull-down menu. Now using the Instances… pull-down menu
enter the currentCount instance. Next, use the <Value> pull-down
and enter an Integer value of 1. The final state of the Rule Editor’s
RHS should look like Figure 53. If you want, you may also delete
the (NOT ...) pattern from the Hello rule’s LHS. Now save the
Hello rule.
7 – 147

Chapter 7: A More Complex Agent (Example Agent 2)
Step 6c. Alter the Quit rule’s LHS.
Now we want to alter the Quit rule so that it will recognize when
the current count reaches the targetCount. We will no longer need

Figure 52. PAC Editor with Two Java Instances
7 – 148

Chapter 7: A More Complex Agent (Example Agent 2)
the pattern to test for the Quit Printing Now string, so delete the
pattern (?str EQUALS “Quit Printing Now”) using the Delete button.

Click on the New button to clear the accumulator’s text field. Now
add a pattern that tests to see if the currentCount is equal to the
targetCount. Click on the <Operators> pull-down menu and select
the numeric equal sign (‘=’). You may need to scroll down the list
of menu item entries to find the equal sign. Now use the
Instances… pull-down menu and enter the two Java instances
(currentCount and targetCount). The Rule Editor should now look
like Figure 54 for the Quit rule’s LHS. Now, save the rule and
make sure that it runs correctly and prints out “Hello World” (fol-
lowed by the time) three times in succession.

Figure 53. Rule Editor Showing Hello Rule RHS
7 – 149

Chapter 7: A More Complex Agent (Example Agent 2)
Figure 54. Rule Editor
7 – 150

Chapter 8: Simple Agent with a PAC

8 – 151
C h a p t e r 8

Simple Agent with a
PAC

In this chapter you will learn about
PACs. These accessory classes can be
viewed as plug-in modules that extend
the behavior of your agents. You will
learn how to:

• Create an Ontology
• Use the Object Modeler
• Create a PAC
• Create rules that use the PAC
• Create an agent that uses the PAC

Chapter 8: Simple Agent with a PAC
We have been creating agents that are self-contained. Everything
that these agents are required to do can be provided by built-in
functions, objects, etc. However, most agents require much more
varied capabilities than can be provided by an agent development
tool. Therefore, AgentBuilder supports the creation of Project
Accessory Classes (PACs). PACs are custom classes coded in Java
and designed to perform some specific tasks that augment the
agent’s behavior.

The PACs allow you to develop complex agents capable of per-
forming a wide variety of activities. The developer must create or
import the Java classes that will be used as PACs. AgentBuilder
also provides support for creating templates based on the object
model created inside the Ontology Manager’s Object Modeler.
Moreover, Acronymics, Inc. also provides libraries of PACs with
specific capabilities (email, NNTP news reader, database access,
etc.).

In this example, we will create an agent with a simple PAC. As you
work through this example you will learn how to integrate custom
classes into your agents. The Object Modeler (accessed from the
Ontology Manager) allows you to define each class, its methods
and attributes (data members). The resulting object model is then
imported into the PAC Editor. This allows the PAC to be utilized
in any rules that the agent requires. The agent can access methods
or attributes in the PAC from either the LHS or RHS of its behav-
ioral rules.

The agent created in this example will print out “Hello World” fol-
lowed by the time and operates in much the same way as the previ-
ous example agents. However, we will utilize user-implemented
Java code to perform the printing rather than using the built-in Sys-
temOutPrintln action. You will learn how to define an action and
connect an action to a user-defined Java method at run-time. You
will also learn how values can be passed from the agent’s mental
8 – 152

Chapter 8: Simple Agent with a PAC
state to an action and then to a method within the PAC. The steps in
creating this agent are summarized in Table 9.

Step 1. Create New Ontology
The first step in developing the Hello PAC is to create a new ontol-
ogy (which we will call the Quick Tour Ontology). This can be
accomplished by clicking on Ontologies in the Project Manager
window. The Ontology Manager (Figure 55) displays the various
ontologies that are available either from the user’s personal reposi-
tory or from the system repository. Note that AgentBuilder pro-

Table 9. Simple Agent Using PAC

Step Description

1. Create New Ontology

2. Create Hello Object in Object Modeler

3. Generate Java Template File for the Hello Class

4. Create New Agent

5. Import Hello class into a Hello PAC

6. Create PAC Instance

7. Create Java Instance

8. Create Rules to Use the PAC

a. Create the Init Rule

b. Create the Print Rule

c. Create the Quit Rule

9. Run Agent
8 – 153

Chapter 8: Simple Agent with a PAC
vides some system ontologies that are used in some of the example
agents.

To create a new ontology, right-click on the folder labeled user and
select New Ontology from the pop-up menu. AgentBuilder will
then display the Ontology Properties window (Figure 56). Fill in
the name of the ontology (e.g., Quick Tour Ontology) along with
a short description of the ontology and click on the OK button to
enter the properties into the new ontology.

Step 2. Create a Hello Object in the Object Mod-
eler
Now we need to populate the QuickTour ontology with a Hello
class. To do this, select the Quick Tour Ontology from the left panel
in the Ontology Manager and then select Tools Object

Figure 55. Creating a New Ontology
8 – 154

Chapter 8: Simple Agent with a PAC
Model.... This will display a blank canvas where different classes
can be organized, defined, and then imported into PACs. To create
a node for the Hello class, right-click anywhere on the Object Mod-
eler canvas and select New Object... from the pop-up menu. Fill
out the name and description of the Hello class as shown in Figure
57. Click on the Enter button located next to the Name text field
when you have finished.

Our Hello class will only have a single attribute named greeting
which will be of type String. Select String from the <Attribute
Type> combo box and enter the name (e.g., greeting) in the Name
text field of the Attributes panel and click on the Add button. Note
that when you add any attribute the corresponding set and get
methods are automatically added to the Methods list at the bottom

Figure 56. Ontology Properties for Quick Tour Ontology
8 – 155

Chapter 8: Simple Agent with a PAC
of the panel. The <Attributes Type> combo box is editable, so if an
attribute is needed that is not on the list it can be added in the
combo box.

Note that the type must be fully qualified with its package name.
All new types must be defined in the current object model or in
some other ontology. For every class, the tool automatically adds
an empty constructor and a clone method. For this class, you will
need to define two new methods: a constructor with a String input,
i.e., Hello(String val); and a printGreeting(String timeString)
method that will be invoked as one of the agent's actions. The
printGreeting method will print a greeting stored in the PAC then
print the input timeString.

Figure 57. Class Properties for the Hello Class
8 – 156

Chapter 8: Simple Agent with a PAC
To add a method, use the Methods panel of the Class Properties
dialog to enter the method's name (e.g., printGreeting) and then
specify the return type and parameter types and names. Enter
printGreeting in the top text field in the Methods panel, then
select void for the return type, then click on Enter to move the
method name into the accumulator. Next, select String for the
parameter type and type a parameter name (e.g., timeString) into
the lower text field in the Methods panel, then click on the lower
Enter button. Then click on the Add button to add void print-
Greeting(String timeString) to the method list.

Follow the same procedure to define the single-input constructor,
using method name Hello (remember that the constructor method
name must be the same as the class name), no return type, and a
String parameter with a name of your choice (e.g., val). You don't
need to specify the return type because the tool will recognize that a
method with the same name as the class is a constructor for that
class, so it will not have a return type.

For methods that have more than one parameter you'll need to
sequentially enter the parameter types and names on the second line
in the Methods panel, clicking on the lower Enter button to store
each parameter into the accumulator. Then when all parameters
have been specified, click on Add to store the method signature into
the method list. For the current example PAC, after you finish add-
ing the single attribute and the two methods, the Class Properties
Dialog should look like that shown in Figure 58. If you make a mis-
take, click on the New button to clear the Methods panel field and
then enter your information again. Click on OK to dismiss the Class
Properties Dialog.

You can examine the Object Modeler output. If you do, you will see
a display similar to Figure 59. You need to save the object model by
selecting File Save.
8 – 157

Chapter 8: Simple Agent with a PAC
Step 3. Generate Java Template File for the Hello
Class.
To assist you in creating the underlying classes represented by any
object in your object model, AgentBuilder provides facilities to
automatically generate a file that can act as a template for the class.
To generate the file Hello.java in the Object Modeler, select File

 Generate Java Files…. This will bring up an Export Dialog
window as shown in Figure 60. With this dialog, you can select
which objects should have Java files automatically created or you
can click on the Select All button and select all objects in the cur-

Figure 58. Object Properties Dialog for Hello Class
8 – 158

Chapter 8: Simple Agent with a PAC
rent model. Use the Directory panel to specify the directory where
you wish to save the generated Java files.

Alternatively, you can use the Browse button to graphically navi-
gate your computer’s file structure. Pressing the Browse button
will bring up the Directory Dialog shown in Figure 61. You can use
this dialog to navigate your file space and determine where to save
your files. The three buttons near the top of the Directory Dialog
allow you to go up one level in the directory hierarchy, create a new
directory, and specify your home directory. When you have
selected the appropriate objects and determined the directory where
you wish to save the resulting Java files, click on the OK button.
Examine the Java Hello.java located in the directory that you
specified and ensure that your CLASSPATH environment contains this
directory. Note that get and set methods are completely defined for
you in the generated code.

Figure 59. Object Modeler After Defining Hello Class
8 – 159

Chapter 8: Simple Agent with a PAC
Use any text editor (e.g., emacs) to open the Hello.java file, then
type the line:
greeting = val;

inside the Hello(String val) constructor. Next, in the Hello()
empty constructor, put the line:

Figure 60. Export Dialog

Figure 61. Directory Dialog for Automatically Generated Java Files
8 – 160

Chapter 8: Simple Agent with a PAC
greeting = “Hello World”;

Inside the printGreeting method put the line:
System.out.println(greeting + “: “ + timeString);

All PACs must implement the Cloneable interface, i.e., they must
provide a clone() method which returns a java.lang.Object.
This is needed because PAC instances are sometimes cloned when
they are manipulated by the agent engine, such as when PAC
instances are used as action arguments. The default clone method
generated by the Agent Manager will attempt to invoke
super.clone(), the clone() method of the superclass of the PAC.
Usually the superclass is the java.lang.Object class, so
super.clone() will simply create a bitwise copy (i.e., a shallow
copy) of the original object. For most PACs this is adequate, but
there may be some situations where you'll want to provide your
own clone method. In a graphical interface PAC, for example, you
may want the clone method to simply return a reference to the
instance without actually cloning the instance. This could be done
by changing the body of the clone method to return this. In other
situations you may need to provide the code for a PAC's clone
method in order to get a deep copy. In a deep copy, the sub-objects
referenced in the original object are themselves cloned; in a shallow
copy only the references to the sub-objects are copied.

The complete file, as modified, is shown in Figure 62.

You now need to save and compile the .java file to produce a
.class file. If you do not have a JDK or other Java development
environment then the built-in Hello.class file can be used. This
file is provided in the jar file included with the AgentBuilder distri-
bution.
8 – 161

Chapter 8: Simple Agent with a PAC
/*
 *
 * File: Hello.java
 *
 * Automatically generated by AgentBuilder (tm).
 */

import java.io.Serializable;

public class Hello implements Cloneable, Serializable
{

 //Attribute list

 String greeting;

 //Method list

 /***/
 public Hello()
 {
 greeting = "Hello World";
 }

 /***/
 public Object clone()
 {
 Object clonedObject = null;
 try
 {
 clonedObject = super.clone();
 }
 catch(CloneNotSupportedException exception)
 {
 exception.printStackTrace();
 }
 catch(OutOfMemoryError exception)
 {
 exception.printStackTrace();
 }

 return clonedObject;
 }

 /***/
 public void setGreeting(String greeting)
 {
 this.greeting = greeting;
 }

 /***/
 public String getGreeting()
 {
 return(greeting);
 }

 /***/
 public void printGreeting(String timeString)
 {
 System.out.println(greeting + ": " + timeString);
 }

 /***/
 public Hello(String val)
 {
 greeting = val;
 }

}/* End of: Hello.java*/

Figure 62. Hello.java Code Listing as Modified
8 – 162

Chapter 8: Simple Agent with a PAC
Step 4. Create new agent
Now we need to create a new agent. Use the Project Manager to
create a new agent by selecting the Quick Tour Agency and then
selecting File New.... Enter the agent’s name (ExampleAgent3)
and a description of the agent as shown in Figure 63. Now click on
the OK button in the Agent Properties window to associate this
information with the agent.

Step 5. Import Hello class into a HelloPAC
Now we need to import the Hello class into a PAC. If you don’t
have the Agent Manager open for ExampleAgent3 then go to the
AgentBuilder Program Manager and select ExampleAgent3. Click
on the Agents tab. In Agent Manager, select Tools PAC Editor
from the Agent Manager menu bar. This will open the PAC Editor

Figure 63. Agent Properties
8 – 163

Chapter 8: Simple Agent with a PAC
for ExampleAgent3. Now from this editor, select the File
Import… menu item. This will cause AgentBuilder to display the
Import Dialog (Figure 64).

To import our Hello class into a PAC, use the <Object Models>
combo-box and select Quick Tour Ontology and then select Hello
from the list below the combo-box and click on Add. Hello will
appear in the Selected Object list on the dialog. Click on OK to con-
firm the import of the object listed in the bottom Selected Objects
list. Note that the list at the bottom of the PAC Editor window (in
the Defined PACs panel) now has the Hello PAC included. Select
the Hello PAC in this list and you can see all the attributes. Figure
65 shows what the PAC Editor looks like after importing the Hello
PAC and selecting the Hello package.

Figure 64. Import Dialog
8 – 164

Chapter 8: Simple Agent with a PAC
Step 6. Create PAC Instance
Before creating the agent’s rules, we need to first create a PAC
instance that we can reference from inside the rules. However, this
PAC instance will not be instantiated until the proper rule is fired.

Figure 65. PAC Editor
8 – 165

Chapter 8: Simple Agent with a PAC
Using the PAC Editor on ExampleAgent3, click on the PAC
Instances tab at the top of the panel. Now, enter a name hello-
PACInstance and description into the appropriate text areas. Use
the <PAC> combo-box pull-down menu and select Hello to tell
AgentBuilder what type of PAC to use. Also, be sure that you do
not click on the Initial PAC Instance button. After entering the
name, description and PAC type, click on the Enter button. This
will place the instance in the accumulator line at the top of the
Defined PAC Instances panel. Now click on the Add button to add
this to the list below. The PAC Editor should look like Figure 66
when you are finished. Now save the PAC instance using the File

 Save menu item and close the PAC Editor window using the File
 Close menu items.

Step 7. Create Java Instance
To create this readyToPrint PAC Java instance, open the PAC Edi-
tor (using the Tools menu in the Agent Manager), click on the Java
Instances button and name the instance readyToPrint. Provide a
brief description and click on the Enter button. Select Boolean
under the <Java> pull-down menu and then click Add. Do not click
on the Initial Java Instance checkbox. Now save this instance in the
PAC editor and close the PAC editor by selecting the File Close
menu item.

Step 8. Create rules to utilize PAC
There will be three rules used in the agent. The first rule Init will
create a new instance of our Hello PAC and demonstrate how to
call a constructor on the PAC to initialize the PAC instance. The
final two rules Print and Quit, are similar to the rules we created
in ExampleAgent2 and will be used to control printing. However,
this agent will be using PAC-specific methods to print the greeting
8 – 166

Chapter 8: Simple Agent with a PAC
rather than use the built-in actions we used in our first and second
agents. This is simply for demonstration; usually you will want to
use built-in actions whenever possible.

Step 8a. Create Init rule.
The Init rule is triggered by the startupTime instance and will be
used to create an instance of the Hello PAC at run-time. From the

Figure 66. PAC Editor
8 – 167

Chapter 8: Simple Agent with a PAC
Agent Manager, select Tools Rule Editor to open the Rule
Editor. Use the Edit Properties menu item and select the Rule
Properties dialog to create a rule with the name Init; provide a
short description of the rule. On the LHS of the rule, create a men-
tal condition that will bind to the startupTime. Click on Add to add
it to the Mental Conditions list.

On the RHS of the rule, we want to create and assert a PAC
instance. To do this, we need to call a constructor for the PAC and
utilize the ASSERT operator. Using the <Operators> pull-down
menu, select ASSERT from the Actions panel. The input parameter
of the Assert Dialog is the name of the instance being asserted, in this case
helloPACInstance. This will be the name associated with the
instance within the agent’s mental model. For the second parame-
ter of the ASSERT, specify a new instance of Hello PAC by clicking
on the New Object... button. The New Object Dialog will then be
displayed. Click on the PACs tab on the top panel and then select
the Hello PAC from the list of PACs available. Now select <Con-
structor> Hello(String greeting) so that you can specify the
greeting. The New Object dialog should look like Figure 67 after
you have finished.

Click on the OK button to confirm the creation of this new object.
Now create a string (using <Value> String) such as Hello
World: The time is . Click on the Add button to create the first
RHS element. Now we also want to assert a new string to trigger
the actual printing rules. To do this, assert a new belief named
readyToPrint and use the <Value> button to make its type Boolean
with a value of true. Again, click on Add to add this expression to
the Defined RHS Elements list. Now add the element to the RHS
and save the rule. Figure 68 shows the Init rule viewed using the
Agent Manager.
8 – 168

Chapter 8: Simple Agent with a PAC
Step 8b. Create Print Rule.
Triggering the print rule should depend on the readyToPrint belief
asserted by the Init rule. Clear the Rule Editor by selecting File
New New Rule.... In the Rule Properties dialog, enter the name
of the rule (i.e. Print) and then a short description of the rule. The
first pattern should bind to the Boolean instance named readyTo-
Print, with a value of true. To create the first pattern, select
<Operators> EQUALS then click on Instances… to bring up
the Instances dialog. Click on the Java Instances tab at the top of
the dialog, then select Boolean readyToPrint, then click on OK.
Next, select <Value> Boolean then choose true in the field;
click on OK to complete the pattern in the accumulator. Click on
the Add button to move the pattern into the pattern list. Add the pat-
tern (BIND currentTime).

Figure 67. Creation of Hello Object in New Object Dialog
8 – 169

Chapter 8: Simple Agent with a PAC
Now select the RHS of the Rule Editor. The Rule Editor allows you
to directly invoke methods on instances and variables. Click on the
Instances… . By double-clicking on the helloPACInstance you can
select the printGreeting method. Select it and then click OK. Now
we want to use the current time string as the input parameter to this
action. This is accessed by clicking on the Instances… button and
selecting the string attribute of the currentTime object. You will
need to click on the small circle next to the current time object to
see the attribute.

Put in a sleep action (for 10 seconds) and increment the value for
the current count Java instance. You may need to go to the PAC
Editor to create the currentCount and targetCount Java instances.

Create a new action to increment the currentCount variable. Use
the SET_VALUE_OF action from the <Operators> button. These steps
are similar to the steps performed in developing ExampleAgent2.

Figure 68. Init Rule in Agent Manager
8 – 170

Chapter 8: Simple Agent with a PAC
See, for example, Step 6 in Chapter 7. Figure 69 shows the RHS
and LHS of the Print rule viewed in the Agent Manager.

Step 8d. Create Quit rule.
Save the Print rule and then clear the Rule Editor using the New
and Delete buttons. Now enter Quit in the Name text field and a
short description of the Quit rule. Now enter a LHS condition in
the mental state that will cause the rule to fire when the current
count reaches the target count value. (Again, if you need detailed
instructions for completing this step, refer to the discussion for con-
structing ExampleAgent2, Step 6c). On the RHS, simply shutdown
the agent engine with <Built-In Actions> ShutdownEngine.

Figure 69. Print Rule in Agent Manager
8 – 171

Chapter 8: Simple Agent with a PAC
Step 9. Run agent
Now save the agent in the Agent Manager by selecting File
Save. You can now run the agent from the Options menu in the
Agent Manager and see that it prints three times and then shuts
down.
8 – 172

Chapter 9: An Agent with a Graphical PAC

9 – 173
C h a p t e r 9

An Agent with a Graphical
PAC

In this chapter you will learn how to add
a simple graphical user interface to an
agent. You will:

• Create a new ontology
• Create the GUI interface PAC
• Send and receive messages betweent

the GUI and the agent

Chapter 9: An Agent with a Graphical PAC
This example agent will utilize a more complicated PAC that pro-
vides a GUI interface. The interface PAC will run on its own
thread and use a built-in PAC called PacCommSystem to communi-
cate with the agent via messages. The PacCommSystem class is used
to simplify communication between an agent and an interface PAC.
In addition, we will utilize an ontology from the system repository
that contains the Java code for constructing and displaying the user
interface. This interface class, HelloWorldFrame, defines a simple
interface with two buttons and a text area for printing the agent's
greeting. In this example, we have the GUI send KQML messages
to the agent in order to demonstrate KQML message processing.
Figure 70 shows the HelloWorldFrame interface.

The steps involved in constructing this agent and its associated
graphical user interface are shown in Table 10.

Step 1. Create appropriate ontology
The first thing that we need to do is develop the proper ontology.
Rather than creating a new one, however, it will be more conve-
nient to utilize the Quick Tour Ontology created in ExampleAgent3.

Figure 70. A Graphical User Interface for an Agent
9 – 174

Chapter 9: An Agent with a Graphical PAC
From the Project Manager, click on the Ontologies tab. Select the
user folder in the left panel. Now, open the folder and select the
Quick Tour Ontology. Select Object Model from the Tools menu.
Now, select the Import Class Files… menu item from the File
menu. This dialog allows you to import class definitions for classes
that are already written, in this case the HelloWorldFrame class.
Type in com.reticular.agents.helloWorld.HelloWorldFrame
into the class field and click the Add button. The dialog should
appear as shown in Figure 71.

Next click OK, a warning dialog will appear that notifies you that
the class is not implemented as serializable. This is OK, since this
is a graphic PAC and will not be sent in a communication. You now
have an usable class definition for the HelloWorldFrame class in the
Quick Tour Ontology Object Modeler. Figure 72 shows methods
and attributes available in HelloWorldFrame. Remember, to exam-
ine the properties of an object you must right-click on it and select
Properties… in the popup menu. Note there are no data members
for this class; this means that there were no private or public vari-

Table 10. Creating an Agent with Graphical Interface
PAC

Step Description

1. Create Appropriate Ontology

2. Create New Agent

3. Create Initial PAC Instances

4. Create Rules
a. Create the Build HelloWorldFrame rule
b. Create the PrintGreeting rule

5. Run the Agent
9 – 175

Chapter 9: An Agent with a Graphical PAC
ables with the correct get or set methods. This is appropriate for a
class that is going to run on its own thread using the run method. Be
sure and save the contents of the Object Modeler panel..

Step 2. Create New Agent
Select the Project Manager and then select the Quick Tour Project.
Click on the Quick Tour Agency. We can now create a new agent
inside the Quick Tour Agency (call the agent ExampleAgent4). In
addition to providing the name, description, author and vendor field
information, click on the Communications button. This will bring
up a window as shown in Figure 73.

This Communication Dialog assigns default values for the port num-
ber when you create a new agent. There is no reason to change the
default for this agent. The default is randomly choosen and varies
between 1000 and 6000. In the combo-box, you can either type in

Figure 71. Class Import Dialog
9 – 176

Chapter 9: An Agent with a Graphical PAC
an IP number or a name and domain. Selecting
CURRENT_IP_ADDRESS tells the agent to use the IP address of
your computer. If you are defining agents that are going to run on
multiple machines, then it is necessary to assign specific address to
each agent. Click on the OK button to continue. If you haven’t
done so, click the OK button on the Agent Properties dialog to fin-
ish creating the agent

Step 3. Define the PAC Instance
In this example, we need to define an instance of a HelloWorld-
Frame object. However, before we can define a PAC instance, we
must first import the PAC as we did in ExampleAgent3. Select

Figure 72. Object Properties Dialog
9 – 177

Chapter 9: An Agent with a Graphical PAC
ExampleAgent4 in the Project Manager and then click on the
Agents tab. From the Agent Manager menu bar select Tools
PAC Editor. In the PAC Editor, select File Import and use the
Import Dialog to import the HelloWorldFrame class into a PAC. In
the <Object Model> pop-up menu, select Quick Tour Ontology. The
HelloWorldFrame will appear in the Available Objects list1. Select
HelloWorldFrame and click on the Add button. HelloWorldFrame
will now appear in the Selected Objects list. Figure 74 shows the
Import Dialog. Click OK to dismiss the Import Dialog. HelloWorld-
Frame will now appear in the Defined PACs list in the PAC Editor.

You can now define a PAC instance named myHelloWorldFrame
that's of type HelloWorldFrame. Clicking on PAC Instances
prompts you to save the results. Click on the PAC Instances tab at

1. Actually you will see the complete path such as com.reticu-
lar......\HelloWorldFrame

Figure 73. Communications Dialog
9 – 178

Chapter 9: An Agent with a Graphical PAC
the top of the PAC Editor and enter the name myHelloWorldFrame
and a description, then click on the Enter button. Next select the
HelloWorldFrame from the <PAC> pull-down menu, then click on
the Add button. You should not click on the Initial PAC Instance
check box; the construction of this instance should be done at run-
time using values from the SELF agent belief. Finally, select File
Save in the PAC Editor window. Figure 75 shows the PAC
Instance Editor.

Figure 74. Import Dialog
9 – 179

Chapter 9: An Agent with a Graphical PAC
Step 4. Create Rules.
Next we wish to create the three rules that are needed in this agent.
The three rules are a BuildAndLaunchHelloWorld rule, a Print
Greeting rule, and a Quit rule. In addition to the features that we

Figure 75. PAC Editor for HelloWorld
9 – 180

Chapter 9: An Agent with a Graphical PAC
have seen in the previous agents, this agent will utilize message
conditions that test the messages received by the agent from the
user interface. The messages come from the HelloWorldFrame
instance in response to the user's button clicks on the interface.

Step 4a. Create the BuildAndLaunchHelloWorldFrame rule.
This rule will be responsible for building the HelloWorldFrame
instance from information extracted from the SELF agent belief
which will be present in the agent's mental model at start-up. The
first step is to launch the Rule Editor from the Agent Manager using
the Tools Rule Editor menu item. Specify the name (Build
and Launch HelloWorldFrame) and description of the rule using
the Rule Properties dialog. The LHS is simple and requires a single
mental condition: BIND to the Time instance named startupTime
(<Operators> BIND followed by Instances, startupTime).

Next, create a new variable of type HelloWorldFrame, label the new
variable $helloWorldFrameVar. See ExampleAgent3 if you are
having trouble with creating variables.

The RHS will contain three patterns; one for creating a temporary
variable of type HelloWorldFrame, a second for launching the run
method on a separate thread and a third for assertion of the Hel-
loWorldFrame into the mental state. To create the first pattern,
switch to the RHS panel of the rule editor. Then select <Opera-
tors> SET_TEMPORARY from the Actions panel. This creates
a temporary variable. Then click on the Defined Variable.. button.
Choose the $helloWorldFrameVar from the PAC panel. The second
slot in the SET_TEMPORARY pattern is to be filled with the new
HelloWorldFrame object, which you specify by clicking on the New
Object… button, which displays the New Object dialog. Note that
you can resize this dialog to see the full path and name of the con-
structor. Figure 76 shows the New Object Dialog.
9 – 181

Chapter 9: An Agent with a Graphical PAC
Select the HelloWorldFrame PAC, then select <Constructor>
HelloWorldFrame(PacCommSystem), then click on OK. This
stores HelloWorldFrame(<param0>) into the accumulator, which
indicates that the next step is to specify the argument to the con-
structor. Click again on the New Object… button, select the Pac-
CommSystem PAC, then select <Constructor> void
PacCommSystem(AgentInfo,String) and click on OK. This will
write PacCommSystem(<agentInfo>, <pacName>) into the Hel-
loWorldFrame argument slot in the accumulator. For the PacComm-
System's first argument, click on the Instances… button then

Figure 76. New Object Dialog
9 – 182

Chapter 9: An Agent with a Graphical PAC
double-click on Agent SELF; this will display the AgentInfo
attribute. Click on the AgentInfo agentInfo attribute then click on
OK; SELF.agentInfo will be written into the PacCommSystem's first
argument slot in the accumulator. Figure 77 shows the Instances
Dialog.

For the PacCommSystem's second argument, select <Value>
String, then enter HelloWorld:PAC into the value field and click
on OK. This will store the name HelloWorld:PAC into the PacComm-
System. Finally, click on Add to add this assertion to the list of RHS
patterns, then save the current rule.

The next pattern is much simpler. We wish to start the HelloWorld-
Frame on its own thread (this is when it displays). Bring up the

Figure 77. Instances Dialog
9 – 183

Chapter 9: An Agent with a Graphical PAC
Defined Variables dialog, then double click <?myHelloWorld-
Frame> and choose the run method, then select OK. This inserts
an action pattern into the RHS of the rule. When this pattern is exe-
cuted, the visible frame of the HelloWorldFrame will be shown.
Click on Add to add this action to the list of RHS patterns. Add the
SleepUntilMessage built-in action to a new pattern and click Add;
now save the current rule.

 The next pattern asserts the HelloWorldFrame into the mental
model of the agent. Select <Operators> ASSERT in the Action
panel. Remember that the assert statement needs an instance name
which is entered in the assert dialog. The instance name you enter
should be myHelloWorldFrame or the label you gave it in the PAC
instances panel. The next slot should be the HelloWorldFrame vari-
able, myHelloWorldFrame. Choose it using the Defined Variables…
button in the Defined Variables dialog. Finally, click on Add to add
this assertion to the list of RHS patterns, then save the current rule.
Add the action DO SleepUntilMessage() and save the current rule.

If you view the rule using the Agent Manager, click on the Rules
tab and then select the BuildAndLaunchHelloWorldFrame rule. You
will see a display similar to Figure 78.

Step 4b. Create the PrintGreeting Rule.
Now we want to create a rule that will detect messages from the
user interface and print a greeting in the interface. This can be done
by checking to make sure that the sender of the KQML message is
named HelloWorld:PAC, the performative is achieve, and the con-
tent of the message is a String with the value Say Hello. These are
the values in the message sent by the interface PAC when the user
clicks on the interface's Say Hello button.

To implement this behavior, create the PrintGreeting rule and add
a description. Next we need to create a new variable which will
bind to any incoming KQML messages. In the Conditions panel of
9 – 184

Chapter 9: An Agent with a Graphical PAC
the LHS Panel of the Rule Editor click on the New Variable button
then select KqmlMessage in the New Variable Dialog window. Fig-
ure 79 shows the New Variable Dialog.

Next, enter the variable name %message in the Variable Name text
field, then click on Add. This will display the Binding Dialog shown
in Figure 80. For this case, we wish to detect new incoming mes-
sages, so ensure that the KQML Message Binding pull-down has
Incoming selected (the default case) and click OK here and in the
New Variable dialog. This creates a variable that will be available
for use in patterns on the LHS and RHS of the rule.

For the first LHS pattern, select <Operators> EQUALS and
then click on the Defined Variables… button to display the Defined
Variables Dialog (Figure 81). You can select the PACs tab and dou-
ble click on the %message1 variable to display all of the KQML

Figure 78. Agent Manager Showing the Build HelloWorldFrame Rule
9 – 185

Chapter 9: An Agent with a Graphical PAC
message attributes that can be used in message conditions. Select
String sender and click on OK. This will write %message.sender
into the first slot in the message conditions accumulator of the Rule
Editor.

1. The choice of %message for the variable name is based on the following
naming convention: %name for KqmlMessage variables which will bind to
incoming messages, ?name for any variables which will bind to objects in the
agent's mental model (including any stored KqmlMessage objects), and $name
for any temporary variables or return variables. This naming convention is only a
suggestion; you're free to choose whatever variable names you wish.

Figure 79. New Message Variable Dialog
9 – 186

Chapter 9: An Agent with a Graphical PAC
 Next, select <Value> KQML Message to display the Values dia-
log. Figure 82 shows the Values Dialog. Select sender, then click
and erase the value in the <Value> combo-box. Enter Hel-
loWorld:PAC in this combo-box and click OK. Now that the pattern
in the accumulator is complete click on Add in the Rule Editor.

Figure 80. The Binding Dialog

Figure 81. Defined Message Variables
9 – 187

Chapter 9: An Agent with a Graphical PAC
Follow the same process for the performative and contentType
message conditions. The conditions of the rule should make sure
that the performative equals the string constant achieve and the
Class contentType is of Class String. The values needed for each
pattern can be found in the Values dialog.

If you make a mistake creating a message condition, you can clear
it from the accumulator text field using the New button. You can
clear an entry from the Message Condition list using the Delete but-
ton.

The fourth LHS pattern in this rule tests the binding in a message
variable. In the Conditions panel select <Operators> EQUALS,

Figure 82. Message Properties
9 – 188

Chapter 9: An Agent with a Graphical PAC
then click on the Defined Variable.. button to display the Defined
Variables dialog. Select Pacs tab at the top of the dialog, then dou-
ble-click on the %message variable and select Object content.
Choose String from the <Casting Type> combo box to type cast
the content type to String (this allows you to condition with the
content as if it were a string), then click on OK. This writes %mes-
sage.content into the accumulator. Next, click on <Value>
String, then enter Say Hello into the text field and click on OK.
Note: the string tested for in this mental condition must be exactly
the same as the string sent in the message from the interface, other-
wise the rule will not fire. Finally, click on Add to add the message
condition to the list. Figure 83 shows the LHS of the PrintGreet-
ing rule in the Rule Editor.

Figure 83. Rule Editor Showing Print Greeting Rule LHS
9 – 189

Chapter 9: An Agent with a Graphical PAC
Now select the Right-Hand Side tab in the Rule Editor. The RHS
of the PrintGreeting rule will use the print method on the myHel-
loWorldFrame instance to print a greeting in the PAC interface and
will put the agent to sleep until another message arrives. In the
Actions panel, select the Instances… button, then choose the print
method shown in the subtree beneath the myHelloWorldFrame
instance. Selecting OK in the dialog writes DO myHelloWorld-
Frame.print(<param0>) into the accumulator.

Use a string concatenation function as the argument to the Print
method, to combine the standard greeting with the agent's current
time belief (as we did with Example Agent 2).Select <Operators>

 Concat, then select <Value> String and enter Hello
World! The time is , then click OK. Note that this string is not
used in any comparisons (as was the Say Hello string in the mes-
sage pattern) so you're free to type in any greeting you choose. For
the second argument in the Concat function, click on the
Instances… button then double-click on the Time currentTime
instance, then click on the String string attribute under current-
Time. This will write currentTime.string into the slot for the sec-
ond Concat argument, completing the Print action pattern. Click
on Add to add this to the list of RHS patterns.

Finally, add a SleepUntilMessage action. This requires the same
sequence of steps as was done for the SleepUntilMessage action in
the previous rule. After both RHS patterns have been added, save
the Print Greeting rule.

In the Quit rule we want to detect when the user clicks on the Quit
button of the HelloWorldFrame and shutdown the agent. The LHS
message and mental conditions for this rule are exactly the same as
the Print Greeting rule except that mental condition should test for
the String Quit (instead of Say Hello). The RHS consists of a sin-
gle action, the built-in action ShutdownEngine. The Quit rule
should look like that shown in Figure 84.
9 – 190

Chapter 9: An Agent with a Graphical PAC
Step 5. Run the Agent
You can now run the agent from the Agent Manager. Every time
you click on the Say Hello button you should get a printout in the
HelloWorldFrame that says Hello World! The time is . When you
click on the Quit button the HelloWorldFrame should disappear and
the agent engine should shutdown. The console should remain vis-
ible until you select File Exit.

Congratulations! You have completed the introduction to Agent-
Builder and now know how to use the basic capabilities of the tools.
The next chapter will tell you how to build two agents that commu-
nicate with each other using KQML. The final chapter in this
User’s Guide describes the use the AgentBuilder Pro Agency
Viewer and agency construction tools. Be sure and review the Ref-

Figure 84. Agent Manager Showing the Quit Rule
9 – 191

Chapter 9: An Agent with a Graphical PAC
erence Manual for more detailed information about the operation of
the various AgentBuilder tools.
9 – 192

C h a p t e r 10: Creating Agents that Communicate

10 – 193
C h a p t e r 1 0

Creating Agents that
Communicate

This chapter provides detailed instruc-
tion for creating two agents that can
communicate with each other. These two
agents take on the roles of a buyer and a
seller. This chapter describes

• Creating the Buyer/Seller Ontology
• Creating a Buyer Agent
• Creating a Seller Agent
• Writing the Rules for the Agents
• Running the Agents

C h a p t e r 10: Creating Agents that Communicate
This example will demonstrate how two agents communicate with
each other. The two agents will run on their own Java virtual
machine, so they can be started from AgentBuilder. The agents will
communicate with each other via messages using the agent commu-
nications module. In addition, we will use the PriceRequest PAC
located in the system repository's ontology. The PriceRequest PAC
will be used by the agents to request and send a price quote for a
certain product. In this example, an agent, SimpleBuyer, will send a
message to another agent, SimpleSeller, requesting a price quote on
a certain product. The SimpleSeller agent will respond by returning
a message that contains the price of the product

Table 11. Creating Two Agents that Communicate with
Each Other

Step Description

1. Create SimpleBuyerSeller Ontology

2. Create SimpleSeller agent.

3. Import PAC Object and create initial Java instance.

4. Create rules.

a. Create the WaitForIncomingMessage rule.

b. Create the RespondToIncomingMessage rule.

5. Create SimpleBuyer agent.

6. Import PAC Object.
10 – 194

C h a p t e r 10: Creating Agents that Communicate
Step 1. Create SimpleBuyerSeller Ontology
We will use the System Repository's SimpleBuyerSeller Ontology
rather than create one. From the Project Manager, select the Ontolo-
gies tab an then (in the left-hand panel) open the System Reposi-
tory. Now, select the SimpleBuyerSeller Ontology and right-click on
it. Select Copy from the pop-up menu. Now, select the user ontol-
ogy folder and right-click on the ontology. Select Paste from the
pop-up menu. You now have an editable copy of the SimpleBuy-
erSeller Ontology in your user ontology folder. Figure 85 shows the
Simple BuyerSeller Ontology in the user's ontology folder.

We also need to create a new agency as part of the Quick Tour
Project. From the Project Manager, select the Quick Tour Project
folder you created earlier. Right-click on this folder to pop up a
menu that will allow you to select New Agency…. Name this new
agency the SimpleBuyerSellerAgency.

Create Rules

a. Create PriceQuote rule.

b. Create Send PriceRequestToStoreAgents rule.

c. Create ReceivePriceQuotesFromStoreAgents
rule.

7. Run the Agent

Table 11. Creating Two Agents that Communicate with
Each Other

Step Description
10 – 195

C h a p t e r 10: Creating Agents that Communicate
Step 2. Create SimpleSeller Agent
Go to the Project Manager by selecting the Project tab. Select the
SimpleBuyerSeller Agency. You can now create a new agent that
belongs to the SimpleBuyerSeller Agency by right-clicking on the
selected agency and selecting the New Agent menu item. Fill in the
name, description, author, and vendor field information for the
SimpleSeller agent. The agent is given default values for the com-
munication settings. If you want to change them, click on the Com-
munications… button and enter an IP address or a new port
number. Now, click on the OK button to close the Communications
Dialog. Click the OK button on the Agent Properties dialog to close
it. The default port number is randomly assigned, so yours may be
different from that shown in Figure 86.

Figure 85. Simple Buyer/Seller Ontology
10 – 196

C h a p t e r 10: Creating Agents that Communicate
Step 3. Import PAC Object and create initial Java
instance
In order to import a PAC, we must open the PAC editor. Select the
SimpleSeller agent in the Project Manager window, and choose
Agents in the tab menu. In the Agent Manager window, select
Tools PAC Editor from the menu bar. Now choose File
Import…, to import the PriceRequest class from the Simple Buy-
erSeller Ontology. This will bring up the window shown in Figure
87. Using the <Object Model> pop-up menu, select Simple Buy-
erSeller Ontology; this will list the available classes. Select PriceRe-
quest and click on the Add button, then on the OK button to close
the Import Dialog. PriceRequest should appear in the list of Defined
PACs. Go ahead and save the current PACs by selecting File
Save..

Figure 86. Simple Seller Communications Dialog
10 – 197

C h a p t e r 10: Creating Agents that Communicate
Since the SimpleSeller agent only needs to know the price for a
product, we will use a Java instance. In the PAC Editor, select Java
Instance tab. In Java Instance Properties, enter the name compact-
DiscPrice and a description. Now click on the Enter button. From
the <Java> popup menu select Float. Check the Initial Java Instance
check box, enter 9.99 as the value and click on the Add button .
From the Defined Java Instances panel, click on the Add button (see
Figure 88). Finally, save the Java Instance by selecting File
Save in the PAC Editor window.

Figure 87. Simple Seller Import Dialog
10 – 198

C h a p t e r 10: Creating Agents that Communicate
Step 4. Create rules.
Now we need to create the rules that will handle the incoming mes-
sage and respond to the agent that sent that message. There are only
two rules, WaitForIncomingMessage and RespondToIncomingMes-
sage. The agent will only respond to messages that meet the mes-
sage conditions.

Step 4a. Create the WaitForIncomingMessage rule.
This rule will put the agent to sleep until the agent receives a mes-
sage. First, open the Rule Editor by selecting Tools Rule Editor
in the Agent Manager's menu bar. Then, select the Edit Proper-

Figure 88. Simple Seller PAC Editor
10 – 199

C h a p t e r 10: Creating Agents that Communicate
ties menu item. Enter the name and description for the rule in the
Rule Properties dialog.

On the Left-Hand Side of the rule you need to create a Mental Con-
dition that binds to the Agent instance named SELF. You do this by
selecting <Operators> BIND, clicking on Instances… button,
selecting Agent SELF and clicking on the OK button. Click on the
Add button in the Rule Editor to add the new pattern to the Mental
Conditions list.

The right-hand side of the rule will contain a single built-in action.
Select <Built-in Actions> SleepUntilMessage, and click on
the Add button. Now save the rule by selecting File Save in the
Rule Editor window.

Step 4b. Create the RespondToIncomingMessage rule.
This rule will test all incoming messages to see if the sending agent
is requesting a price quote. If this is the case, it will fill in the price
and store name in the PriceRequest object and send it to the agent
that requested it.

To enter a new rule, select the File New New Rule menu
item. Enter the name RespondToIncomingMessage and a brief
description of the rule. On the Left-Hand Side of the rule click New
Variable… button to create two variables of type KqmlMessage and
Agent. Select KqmlMessage, enter %message as the variable name
and click on the Add button. This will display the Binding Dialog;
select Incoming and click on OK to close the Binding Dialog. Now,
select Agent and enter ?buyer as the variable name, and click on
the Add button. The New Variable Dialog is shown in Figure 89.
Click on OK to close the New Variable dialog.

To create the first Message Condition, select <Operators>
EQUALS using the Rule Editor. This will insert (<> EQUALS <>) in
the accumulator. Next, click on Defined Variable…, double click on
10 – 200

C h a p t e r 10: Creating Agents that Communicate
%message, select sender, and click on the OK button to insert
%message.sender in the accumulator. To finish the EQUALS con-
dition, click on Defined Variable… button, open the ?buyer folder
and then the agentInfo folder. Finally select the name and click on
OK. This will enter the pattern ?buyer.agentInfo.name into the Rule
Editor. Click on the Add button to add the pattern to the Message
Condition list.

Figure 89. Simple Seller New Variable Dialog
10 – 201

C h a p t e r 10: Creating Agents that Communicate
Follow the same process for the performative and contentType
message conditions. The conditions of the rule should ensure that
the performative equals the string constant ask-one and the content-
Type is PriceRequest. The value for the contentType can be found
by selecting <Value> Class PriceRequest. Figure 90 shows
the left-hand side of the RespondToIncomingMessage rule.

On the right-hand side of the rule, we will print a message that we
received with the price request, reply to the message, and print
another message confirming that we have sent the price quote to the
requesting agent.

To print a message, select <Built-in Actions> SystemOut-
Println. This will add Do SystemOutPrintln(<output>) to the accu-
mulator. Next, select <Operators> Concat, this will add

Figure 90. Simple Seller Rule Editor
10 – 202

C h a p t e r 10: Creating Agents that Communicate
Concat(<string>, <string>) to the accumulator. Now, select <Value>
 String, this will pop-up a window; type Received a price

quote from in the Literal Value field and click on OK. To print the
name of the agent requesting a price quote, click on Defined Vari-
able…, select ?buyer.agentInfo.name and click on OK. Now, add
the action to the Defined RHS Elements by clicking on the Add but-
ton.

Next, we need to fill in the price and storeName on the PriceRe-
quest object we received from the buyer agent. Select <Opera-
tors> SET_VALUE_OF, this will add SET_VALUE_OF <> TO <>
to the accumulator. Click on Defined Variable… to select %mes-
sage.content, select <Casting Type> PriceRequest, and select
%message.content.price. To finish the Mental Change, click on
Instances, select the Java Instances radio button, select compact-
DiscPrice, and click on OK.

Follow the same process to set the value of %message.con-
tent.storeName to SELF.agentInfo.name. The instance SELF can be
found in the Instances dialog.

Now, we need to send the buyer agent the message with the
PriceRequest information. In the Actions panel, select <Built-in
Actions> SendKqmlMessage, this will add Do SendKqmlMes-
sage(<message>,<receiver>, <performative>,<content>,<reply-
With>,<inReplyTo>,<language>,<ontology>, <protocol>,
<to>,<from>) to the accumulator. Since we are going to reply with
the same message, we only need to fill in five parameters of the
KqmlMessage. The first four parameters are the following: %mes-
sage, %message.sender, “tell”, %message.content. <reply-
With>, %message.replyWith. Note: you do not need to enter
anything in the <replyWith> field. The <replyTo> field should be set
to %message.replyWith. Warning! You will need to explictly cast
message.content to Price Request. Otherwise, you will receive an
10 – 203

C h a p t e r 10: Creating Agents that Communicate
error message at runtime complaining that the object is not serializ-
able.

The next action is another print statement. Follow the process
described above to construct a string with the values Sent price
quote to and %message.sender.

Finally, we need to add another action that will put the agent to
sleep until it receives another message from an agent. Select <Built-
in Actions> SleepUntilMessage to add Do SleepUntilMes-
sage() to the accumulator. All we need to do now is add the rule to
the list of Defined RHS Elements and save the rule. Your rule
should be similar to the one shown in Figure 91.

Figure 91. Simple Seller Rules
10 – 204

C h a p t e r 10: Creating Agents that Communicate
Step 5. Create SimpleBuyer agent.
To create the SimpleBuyer agent, follow the same procedures
described in step 2. The agent properties will be the same as the
SimpleSeller agent, except for the name (which is “SimpleBuyer”)
and the port number.

Step 6. Import PAC Object.
To import the PAC Object, please refer to Step 3. Note: the Simple-
Buyer agent doesn't need the Java Instance that the SimpleSeller
agent needed.

Step 7. Create rules.
The SimpleBuyer agent will need rules to create a PriceRequest
object, send the PriceRequest to each agent that it knows about,
receive the PriceRequest object and print them on the console.

Step 7a. Create the CreatePriceQuote Rule.
In the Rule Editor Properties dialog enter the name CreatePrice-
Quote rule and a brief description. On the Rule Editor's Left-Hand
side enter a Mental Condition that binds to SELF (See second para-
graph of Step 4a). On the Right-Hand Side of the rule assert a new
PriceRequest object. Select <Operator> ASSERT. This will
bring up the Assertion Dialog, leave the field blank and click on
OK. This will insert ASSERT(<>) in the accumulator. Next, click on
New Object… select PriceRequest, select <Constructor>
PriceRequest(String param0, int param1, String param2), and
click on OK. (Remember, you can drag the corners of the dialog
box to increase its size so you can see all the parameters). This will
add PriceRequest(<param0>, <param1>, <param2>) to the accumu-
lator. Fill in the parameter values with the String CompactDisc,
10 – 205

C h a p t e r 10: Creating Agents that Communicate
Integer 1, and String CD. Add the Mental Change to the Defined
RHS Elements and save the rule.

Step 7b. Create the SendPriceRequestToStoreAgents rule.
This rule is executed by the priceQuote instance created in the pre-
vious rule. Clear the Rule Editor using the File New New
Rule menu item. Specify the name (SendPriceRequest-
ToStoreAgents) and a description of the rule.

Select the Left-Hand Side tab of the Rule Editor. Create a new vari-
able of type PriceRequest with the name ?priceQuote (New Vari-
able…, select PriceRequest, enter ?priceQuote in the Variable
Name field); then add a mental condition to BIND to the ?price-
Quote variable (<Operators> BIND followed by Defined Vari-
able.…, ?priceQuote).

You will also need to create a new variable of type Agent with
name ?agent.

The next Mental Condition will prevent the agent from sending the
message to itself. Select <Operators> NOT_EQUALS in the
Conditions panel. Enter ?agent.agentInfo.agentName and
SELF.agentInfo.agentName as the parameters and add it to the
list of Mental Conditions.

On the Right-Hand Side of the rule, we will construct a KqmlMes-
sage and send it to the SimpleSeller agents. Only the first five
parameters are needed in order to send the KqmlMessage. The
parameter values are KqmlMessage(), ?agent.agentInfo.name,
“ask-one”, ?priceQuote, “Price Quote”. You will find the Kqm-
lMessage() constructor using the New Object... button. When you
complete constructing the KqmlMessage, add it to the list of
defined RHS elements.

Now, we need to print a message indicating that we are forwarding
the message to the Seller agents. Select <Built-in Actions>
10 – 206

C h a p t e r 10: Creating Agents that Communicate
SystemOutPrintln, <Operators> Concat, select
SELF.agentInfo.name in the Instances Dialog, then <Operators>
Concat, <Value> String, enter Forwarding price quote
request to in the Literal Value field, and select
?agent.agentInfo.name from the Defined Variable Dialog. Add the
action to the list of defined RHS Elements.

To finish the rule, add the built-in action, SleepUntilMessage, and
save the rule. Figure 92 shows the completed SendPriceRequest-
ToStoreAgents rule.

Step 7c. Create the ReceivePriceQuotesFromStoreAgents rule.
This rule will receive the price quote from the SimpleSeller agent
and print the price of the product. We need to create a KqmlMessage

Figure 92. The SendPriceRequestToStoreAgents Rule
10 – 207

C h a p t e r 10: Creating Agents that Communicate
variable (click New Variable…, select KqmlMessage, enter %mes-
sage in Variable Name field, and click on OK) and an Agent Vari-
able with the name of ?agent. Follow the same process as step 4b
(third paragraph) to test if %message.sender equals
?agent.agentInfo.name, %message.performative equals tell,
%message.contentType equals PriceRequest, and %message.con-
tent.productName equals “CompactDisc” (remember that the mes-
sage content must be cast to PriceRequest).

For the Right-Hand Side of the rule all we need to do is print (to the
console that sent the message) the price quote of the product that
was requested. Select <Built-in Actions> SystemOutPrintln,
<Operators> Concat, <Value> String, enter Received
price quote from , click on Defined Variable…, select
?agent.agentInfo.name, and click on OK.

All that's left to do is add the built-in action SleepUntilMessage
(<Built-in Actions> SleepUntilMessage). Add the action to
the list of Defined RHS Elements and save the rule. Figure 93
shows the ReceivePriceQuotesFromStoreAgents rule.

Step 8. Run agents.
When running the agents, order is important. The SimpleSeller
agent must be started before the SimpleBuyer agent. This will pre-
vent the SimpleBuyer agent from sending a message to an agent
that doesn't exist.

The agents can be started from the AgentBuilder application or
from the engine application. If you decide to run the agents from
the engine, create the RADL files first by selecting Options
Generate Agent Definition from the Agent Manager.

To start the agents from the Agent Manager window, open Simple-
Seller agent and select Options Run Agent. Now, open the
10 – 208

C h a p t e r 10: Creating Agents that Communicate
SimpleBuyer agent from the same Agent Manager window and
select Options Run Agent.You will see the print statements on
each of the agent's console window. Figure 94 and Figure 95 show
the console windows for both agents.

Now, try adding a RHS pattern to the ReceivePriceQuotesFrom-
StoreAgents rule that will print out a message something like “The
price for the <productName> is <price>. You will need the rule to
perform the following actions: <Built-In Actions> DoSyste-
mOutPrintln, <Operators> concat, <Value> “The price
for the “, <Operator> concat, Defined Variable... %mes-

sage.content.productName, <Operator> concat, <Value>
String “ is “, <Operator> ConvertToString, Defined Vari-

able... %message.content.price. Add the rule to the right-hand
side pattersn. You may need to use the Up button to ensure that this

Figure 93. The ReceivePriceQuotesFromStoreAgents rule
10 – 209

C h a p t e r 10: Creating Agents that Communicate
Figure 94. SimpleSeller Agent Console
10 – 210

C h a p t e r 10: Creating Agents that Communicate
Figure 95. SimpleBuyer Agent Console
10 – 211

C h a p t e r 10: Creating Agents that Communicate
actions is performed before the sleep action. Figure 96 shows the
completed rule.
10 – 212

C h a p t e r 10: Creating Agents that Communicate
Figure 96. The Modified SimpleBuyer Rule
10 – 213

C h a p t e r 10: Creating Agents that Communicate
10 – 214

C h a p t e r 11: Agents that Communicate with CORBA

11 – 215
C h a p t e r 1 1

Agents that
Communicate with
CORBA

This chapter provides detailed instruction
for creating two agents that communicate
with each other using CORBA instead of
RMI. These two agents are the same as in
the previous chapter. Only their commu-
nications mechanism is different. This
chapter also describes:

• Modifying Agency and Agent Com-
munication

• Running a CORBA Name Server
• Running the Agents
This example will demonstrate how two
agents communicate with each other.
The two agents will run on their own
Java virtual machine, so they can be

C h a p t e r 11: Agents that Communicate with CORBA
started from AgentBuilder. The agents will communicate with each
other via messages using the agent communications module. In
addition, we will use the CorbaPriceRequest PAC located in the
system repository's ontology. The CorbaPriceRequest PAC will be
used by the agents to request and send a price quote for a certain
product. In this example, an agent, SimpleBuyer, will send a mes-
sage to another agent, SimpleSeller, requesting a price quote on a
certain product. The SimpleSeller agent will respond by returning a
message that contains the price of the product.

Table 12. Creating Two Agents that Communicate with
Each Other

Step Description

1. Create CORBA Compatible PAC(s)

2. Create Simple BuyerSeller Ontology

3. Create SimpleSeller agent.

4. Import PAC Object and create initial Java instance.

5. Create rules.

a. Create the WaitForIncomingMessage rule.

b. Create the RespondToIncomingMessage rule.

6. Create SimpleBuyer agent.

7. Import PAC Object.
11 – 216

C h a p t e r 11: Agents that Communicate with CORBA
Step 1. Create CORBA Compatible PAC(s)
Any object that will go through the CORBA communication sys-
tem will need to be specified using the OMG Interface Definition
Language (ID). Once you have created the IDL file, you will need
to use Sun Microsystems’ idlj tool to convert the IDL file to a Java
source file. We have provided a sample IDL file and the Java file
that is created by running the idlj tool. You can find these files in
the AgentBuilder src directory.

Step 2. Create SimpleBuyerSeller Ontology
We will use the System Repository's SimpleBuyerSeller Ontology
rather than create one. From the Project Manager, select the Ontolo-
gies tab an then (in the left-hand panel) open the System Reposi-
tory. Now, select the Simple BuyerSeller Ontology and right-click

8. Create Rules

a. Create PriceQuote rule.

b. Create SendPriceRequestToStoreAgents rule.

c. Create ReceivePriceQuotesFromStore agents
rule.

9. Modify Agency Communications

10. Modify Agent Communications

11. Run the Nameserver

12. Run the Agent

Table 12. Creating Two Agents that Communicate with
Each Other

Step Description
11 – 217

C h a p t e r 11: Agents that Communicate with CORBA
on it. Select Copy from the pop-up menu. Now, select the user
ontology folder and right-click on the ontology. Select Paste from
the pop-up menu. You now have an editable copy of the Simple
BuyerSeller Ontology in your user ontology folder. Figure 97 shows
the Simple BuyerSeller Ontology in the user's ontology folder.

We also need to create a new agency as part of the Quick Tour
Project. From the Project Manager, select the Quick Tour Project
folder you created earlier. Right-click on this folder to pup up a
menu that will allow you to select New Agency…. Name this new
agency the SimpleBuyerSellerAgency.

Step 3. Create SimpleSeller Agent
Go to the Project Manager by selecting the Project tab. Select the
SimpleBuyerSellerAgency. You can now create a new agent that

Figure 97. Simple Buyer/Seller Ontology
11 – 218

C h a p t e r 11: Agents that Communicate with CORBA
belongs to the SimpleBuyerSellerAgency by right-clicking on the
selected agency and selecting the New Agent menu item. Fill in the
name, description, author, and vendor field information for the
SimpleSeller agent. The agent is given default values for the com-
munication settings. If you want to change them, click on the Com-
munications… button and enter an IP address or a new port
number. (NOTE: The current version of Java has an interesting fea-
ture that forces you to double click on the port column, enter the
value, and then press the Enter key on your keyboard; any other
sequence will not properly enter the number and will cause an error
message to be displayed.) Now, click on the OK button to close the
Communications Dialog. Now, click the OK button on the Agent
Properties dialog to close it. See Figure 98.

Figure 98. Simple Seller Communications Dialog
11 – 219

C h a p t e r 11: Agents that Communicate with CORBA
Step 4. Import PAC Object and create initial Java
instance
In order to import a PAC, we must open the PAC editor. Select the
SimpleSeller agent in the Project Manager window, and choose
Agents in the tab menu. In the Agent Manager window, select
Tools PAC Editor from the menu bar. Now choose File
Import…, to import the PriceRequest class from the Simple Buy-
erSeller Ontology. This will bring up the window shown in Figure
99. Using the <Object Model> pop-up menu, select Simple Buy-
erSeller Ontology; this will list the available classes. Select PriceRe-
quest and click on the Add button, then on the OK button to close
the Import Dialog. PriceRequest should appear in the list of Defined
PACs. Go ahead and save the current PACs by selecting File
Save..

Since the SimpleSeller agent only needs to know the price for a
product, we will use a Java instance. In the PAC Editor, select Java
Instance tab. In Java Instance Properties, enter the name compact-
DiscPrice and a description. Now click on the Enter button. From
the <Java> popup menu select Float. Check the Initial Java Instance
check box, enter 9.99 as the value and click on the Add button (see
Figure 100). From the Defined Java Instances panel, click on the
Add button. Finally, save the Java Instance by selecting File
Save in the PAC Editor window.

Step 5. Create rules.
Now we need to create the rules that will handle the incoming mes-
sage and respond to the agent that sent that message. There are only
two rules, WaitForIncomingMessage and RespondToIncomingMes-
sage. The agent will only respond to messages that meet the mes-
sage conditions.
11 – 220

C h a p t e r 11: Agents that Communicate with CORBA
Step 5a. Create the WaitForIncomingMessage rule.
This rule will put the agent to sleep until the agent receives a mes-
sage. First, open the Rule Editor by selecting Tools Rule Editor
in the Agent Manager's menu bar. Then, select the Edit Proper-
ties menu item. Enter the name and description for the rule in the
Rule Properties dialog.

On the Left-Hand Side of the rule you need to create a Mental Con-
dition that binds to the Agent instance named SELF. You do this by
selecting <Operators> BIND, clicking on Instances… button,
selecting Agent SELF and clicking on the OK button. Click on the

Figure 99. Simple Seller Import Dialog
11 – 221

C h a p t e r 11: Agents that Communicate with CORBA
Add button in the Rule Editor to add the new pattern to the Mental
Conditions list.

The right-hand side of the rule will contain a single built-in action.
Select <Built-in Actions> SleepUntilMessage, and click on the
Add button. Now save the rule by selecting File Save in the
Rule Editor window.

Figure 100. Simple Seller PAC Editor
11 – 222

C h a p t e r 11: Agents that Communicate with CORBA
Step 5b. Create the RespondToIncomingMessage rule.
This rule will test all incoming messages if they are requesting a
price quote. If this is the case, it will fill in the price and store name
in the PriceRequest object and send it to the agent that requested it.

To enter a new rule, select the File New New Rule menu
item. Enter the name RespondToIncomingMessage and a brief
description of the rule. On the Left-Hand Side of the rule click New
Variable… button to create two variables of type KqmlMessage and
Agent. The New Variable Dialog is shown in Figure 101. Select
KqmlMessage, enter %message as the variable name and click on
the Add button. This will display the Binding Dialog; select Incom-
ing and click on OK to close the Binding Dialog. Now, select Agent
and enter ?buyer as the variable name, and click on the Add but-
ton. Click on OK to close the New Variable dialog.

To create the first Message Condition, select <Operators>
EQUALS using the Rule Editor. This will insert (<> EQUALS <>) in
the accumulator. Next, click on Defined Variable…., double click on
%message, select sender, and click on the OK button to insert
%message.sender in the accumulator. To finish the EQUALS con-
dition, click on Defined Variable… button, open the ?buyer folder
and then the agentInfo folder. Finally select the name and click on
OK. This will enter the pattern ?buyer.agentInfo.name into the Rule
Editor. Click on the Add button to add the pattern to the Message
Condition list.

Follow the same process for the performative and contentType
message conditions. The conditions of the rule should ensure that
the performative equals the string constant ask-one and the content-
Type is PriceRequest. The values needed for each pattern can be
found by selecting <Value> KqmlMessage. Figure 102 shows
the left-hand side of the RespondToIncomingMessage rule.
11 – 223

C h a p t e r 11: Agents that Communicate with CORBA
On the right-hand side of the rule, we will print a message that we
received with the price request, reply to the message, and print
another message confirming that we have sent the price quote to the
requesting agent.

To print a message select <Built-in Actions> SystemOut-
Println, this will add Do SystemOutPrintln(<output>) to the accu-
mulator. Next, select <Operators> Concat, this will add
Concat(<string>, <string>) to the accumulator. Now, select <Value>

String, this will pop-up a window; type Received a price

Figure 101. Simple Seller New Variable Dialog
11 – 224

C h a p t e r 11: Agents that Communicate with CORBA
quote from in the Literal Value field and click on OK. To print the
name of the agent requesting a price quote, click on Defined Vari-
able…, select ?buyer.agentInfo.name and click on OK. Now, add
the action to the Defined RHS Elements by clicking on the Add but-
ton.

Next, we need to fill in the price and storeName on the PriceRe-
quest object we received from the buyer agent. In the Mental
Changes panel, select <Operators> SET_VALUE_OF, this will
add SET_VALUE_OF <> TO <> to the accumulator. Click on Defined
Variable… to select %message.content, select <Casting Type>
CorbaPriceRequest, and select %message.content.price. To finish
the Mental Change, click on Instances, select the Java Instances
radio button, select compactDiscPrice, and click on OK.

Figure 102. Simple Seller Rule Editor
11 – 225

C h a p t e r 11: Agents that Communicate with CORBA
Follow the same process to set the value of %message.con-
tent.storeName to SELF.agentInfo.name. The instance SELF can be
found in the Instances dialog.

Now, we need to send the buyer agent the message with the Cor-
baPriceRequest information. In the Actions panel, select <Built-in
Actions> SendKqmlMessage, this will add Do SendKqmlMes-
sage(<message>,<receiver>, <performative>,<content>,<reply-
With>,<inReplyTo>,<language>,<ontology>, <protocol>,
<to>,<from>) to the accumulator. Since we are going to reply with
the same message, we only need to fill in five parameters of the
KqmlMessage. The first four parameters are the following: %mes-
sage, %message.sender, “tell”, %message.content. <reply-
With>, %message.replyWith. Note: you do not need to enter
anything in the <replyWith> field. The <replyTo> field should be set
to %message.replyWith. Warning! You will need to explictly cast
message.content to Corba Price Request. Otherwise, you will
receive an error message at runtime complaining that the object is
not serializable.

The next action is another print statement. Follow the process
described above to construct a string with the values Sent price
quote to and %message.sender.

Finally, we need to add another action that will put the agent to
sleep until it receives another message from an agent. Select <Built-
in Actions> SleepUntilMessage to add Do SleepUntilMessage()
to the accumulator. All we need to do now is add the rule to the list
of Defined RHS Elements and save the rule. Your rule should be
similar to the one shown in Figure 103.
11 – 226

C h a p t e r 11: Agents that Communicate with CORBA
Step 6. Create SimpleBuyer agent.
To create the SimpleBuyer agent, follow the same procedures
described in step 3. The agent properties will be the same as the
SimpleSeller agent except for the name and the port number.

Step 7. Import PAC Object.
To import the PAC Object, please refer to Step 4. Note: the Simple-
Buyer agent doesn't need the Java Instance that the SimpleSeller
agent needed.

Figure 103. Simple Seller Rules
11 – 227

C h a p t e r 11: Agents that Communicate with CORBA
Step 8. Create rules.
The SimpleBuyer agent will need rules to create a PriceRequest
object, send the PriceRequest to each agent that it knows about,
receive the PriceRequest object and print them on the console.

Step 8a. Create Price Quote rule.
In the Rule Editor Properties dialog enter the name CreatePrice-
Quote rule and a brief description. On the Rule Editor's Left-Hand
side enter a Mental Condition that binds to SELF (See second para-
graph of Step 5a). On the Right-Hand Side of the rule ASSERT a
new PriceRequest object. Select <Operator> ASSERT. This
will bring up the Assertion Dialog, leave the field blank and click on
OK. This will insert ASSERT(<>) in the accumulator. Next, click on
New Object… select CorbaPriceRequest, select <Constructor>
CorbaPriceRequest(String param0, int param1, String
param2), and click on OK. This will add CorbaPriceRe-
quest(<param0>, <param1>, <param2>) to the accumulator. Fill in
the parameters with the String CompactDisc, integer 1, and String
CD. Add the Mental Change to the Defined RHS Elements and save
the rule.

Step 8b. Create Send price request to store agents rule.
This rule is executed by the priceQuote instance created in the pre-
vious rule. Clear the Rule Editor using the File New New
Rule menu item. Specify the name (Send price request to store
agents) and description of the rule. Create a new variable of type
PriceRequest with the name ?priceQuote (New Variable…,
select CorbaPriceRequest, enter ?priceQuote in the Variable
Name field); then add a mental condition to BIND to the ?price-
Quote variable (<Operators> BIND followed by Defined Vari-
able.…, ?priceQuote).

You will also need to create a new variable of type Agent with
name ?agent.
11 – 228

C h a p t e r 11: Agents that Communicate with CORBA
The next Mental Condition will prevent the agent from sending the
message to itself. Select <Operators> NOT_EQUALS in the
Conditions panel. Enter ?agent.agentInfo.agentName and
SELF.agentInfo.agentName as the parameters and add it to the
list of Mental Conditions.

On the Right-Hand Side of the rule, we will construct a KqmlMes-
sage and send it to the SimpleSeller agents. Only the first five
parameters are needed in order to send the KqmlMessage. The
parameter values are KqmlMessage(), ?agent.agentInfo.agent-
Name, “ask-one”, ?priceQuote, “Price Quote”. After construct-
ing the KqmlMessage, add it to the list of defined RHS elements.

Now, we need to print a message indicating that we are forwarding
the message to the Seller agents. Select <Built-in Actions>
SystemOutPrintln, <Operators> Concat, select
SELF.agentInfo.name in the Instances Dialog, then <Operators>
Concat, <Value> String, enter forwarding price quote
request to in the Literal Value field, and select
?agent.agentInfo.name from the Defined Variable Dialog. Add the
action to the list of Defined RHS Elements.

To finish the rule, add the built-in action, SleepUntilMessage, and
save the rule. Figure 104 shows the completed SendPriceRequest-
ToStoreAgents rule.

Step 8c. Create Receive price quotes from store agents rule.
This rule will receive the price quote from the SimpleSeller agent
and print the price of the product. We need to create a KqmlMessage
variable (click New Variable…, select KqmlMessage, enter %mes-
sage in Variable Name field, and click on OK) and an Agent Vari-
able with the name of ?agent. Follow the same process as step 4b
(third paragraph) to test if %message.sender equals
?agent.agentInfo.name, %message.performative equals tell,
%message.contentType equals CorbaPriceRequest, and %mes-
11 – 229

C h a p t e r 11: Agents that Communicate with CORBA
sage.content.productName equals “CompactDisc” (remember that
the message content must be cast to PriceRequest).

For the Right-Hand Side of the rule all we need to do is print (to the
console that sent the message) the price quote of the product that
was requested. Select <Built-in Actions> SystemOutPrintln,
<Operators> Concat, <Value> String, enter Received
price quote from , click on Defined Variable…, select
?agent.agentInfo.name, and click on OK.

All that's left to do is add the built-in action SleepUntilMessage
(<Built-in Actions> SleepUntilMessage). Add the action to
the list of Defined RHS Elements and save the rule. Figure 105
shows the ReceivePriceQuotesFromStoreAgents rule.

Figure 104. The Send price request to store agents Rule
11 – 230

C h a p t e r 11: Agents that Communicate with CORBA
Step 9. Modify Agency Communications
We first need to change the communications being used by the
BuyerSeller agency. From the Project Manager, select the Buy-
erSeller Agency. Next choose Edit Properties..., to modify the
agency's properties. Now click on the Communications... button.

Select CORBA as the default communication to be used in the
agency. Make sure to deselect other communications methods.
Specify the port number to be used for communications. Note that
this port number will need to be the port number that is used by the
CORBA name server. Now click on the OK button to close the
Communications Dialog. Now, click the OK button on the
Agency Properties dialog to close it. See Figure 106. .

Figure 105. The Receive price quotes from store agents rule
11 – 231

C h a p t e r 11: Agents that Communicate with CORBA
Step 10. Modify Agent Communication
Now that the communication for the agency has been established,
we now need to set the communication for each agent in the
agency. For this agency, we will need to set the communication for
the SimpleBuyer and for the SimpleSeller agents.

From the Project Manager, select the Simple Buyer agent. Next
choose Edit Properties..., to modify the agent's properties. Now
click on the Communications... button.

Select CORBA as the default communication to be used by the
agent. Make sure to deselect other communications. Specify the
port number to be used for communications. Note that this port
number will need to be the same port number that was specified for

Figure 106. Communications Dialog for CORBA Buyer Seller
11 – 232

C h a p t e r 11: Agents that Communicate with CORBA
the agency. Now click on the OK button to close the Communica-
tions Dialog. Now, click the OK button on the Agency Properties
dialog to close it. See Figure 107. .

Repeat the above procedure for modifying the communication set-
tings for the SimpleSeller agent.

Step 11. Run the Nameserver
Now that the communication has been set for the agency and for all
agents in the agency, we now need to run the CORBA name server.
Currently, AgentBuilder only supports the CORBA name server
that is distributed with Sun's Java Runtime Environment. Please

Figure 107. Simple Buyer Communications Dialog
11 – 233

C h a p t e r 11: Agents that Communicate with CORBA
contact Acronymics, Inc. if you need support for another name
server.

Now, open a command-line shell. For Windows, this will be your
DOS or Command window and for UNIX, this will be your com-
mand-line shell. Run the following command:
<path_to_agentbuilder_installation>/Jre/bin/tnameserv
-ORBInitialPort port

This will run Sun's Transient Name Server on the specified port.
Remember to use the same port number that was specified for the
agency and agents above. When the CORBA name server begins
running, the agents can communicate with each other. See Figure
108.

Step 12. Run agents.
With the communication set and the name server running, we are
now ready to run the agents. When running the agents, the order in

Figure 108. Running the Transient Name Server
11 – 234

C h a p t e r 11: Agents that Communicate with CORBA
which they are started is important. The SimpleSeller agent must
be started before the SimpleBuyer agent. This will prevent the
SimpleBuyer agent from sending a message to an agent that
doesn't exist.

The agents can be started from the AgentBuilder application or
from the engine application. If you decide to run the agents from
the engine, create the RADL files first by selecting Options
Generate Agent Definition from the Agent Manager.

To start the agents from the from the Agent Manager window, open
SimpleSeller agent and select Options Run Agent. Now, open
the SimpleBuyer agent from the same Agent Manager window and
select Options Run Agent.You will see the print statements on
each of the agent's console window. Figure 109 and Figure 110
show the console windows for both agents.
11 – 235

C h a p t e r 11: Agents that Communicate with CORBA
Figure 109. Simple Seller Agent Console
11 – 236

C h a p t e r 11: Agents that Communicate with CORBA
Figure 110. Simple Buyer Agent Console
11 – 237

C h a p t e r 11: Agents that Communicate with CORBA
11 – 238

C h a p t e r 12: Creating and Running Agents using Protocols

12 – 239
C h a p t e r 1 2

Creating and Running
Agents using Protocols

This chapter provides detailed information
on constructing agents that use a commu-
nications protocol. You will learn how to
use:

• Roles and protocols
• Protocol Editor
• Agency Viewer
• Debugging Agencies

C h a p t e r 12: Creating and Running Agents using Protocols
NOTE: The tools described in this chapter are available only
with the AgentBuilder Pro version of the toolkit.

This chapter provides details for recreating the Simple Buyer and
Seller agents using agent interaction protocols. These two agents
are very similar to the original Simple Buyer and Simple Seller.
The primary difference being how their rules are constructed. This
chapter describes:

• Creating the SimpleBuyerSellerWithProtocol agency.
• Automatically creating the SimpleBuyer2 and the

SimpleSeller2 agents.
• Constructing the SimpleBuyerSellerProtocol - an interaction

protocol.
• Applying the protocol to the SimpleBuyerSellerWithProtocol

agency.
• Finishing the SimpleBuyer2 and the SimpleSeller2 agents.
• Running the agents using the Agency Viewer tool.
This example demonstrates how to build two agents that communi-
cate with each other using the built-in agent communication sub-
system. The agents will communicate with each other using a
protocol built using the Protocol Editor. The protocol specifies
how the agents interact when they are involved in negotiations. In
this particular case, for simplicity, the agents will be performing
exactly the same interaction as the SimpleBuyer and SimpleSeller
agents in Chapter 10. The content of the messages is the PriceRe-
quest PAC from the SimpleBuyerAndSeller ontology. The
basics of the interaction is that the SimpleBuyer sends a partially
completed PriceRequest PAC and the SimpleSeller completes it
and returns it. See the previous chapter for more information about
SimpleBuyer and SimpleSeller interactions.
12 – 240

C h a p t e r 12: Creating and Running Agents using Protocols
Table 13. Creating Two Agents with Protocols

Step Description

1. Create the BuyerSellerWithProtocol agency.

2. Create the SimpleBuyer2 and SimpleSeller2
agents.

3. Copy or create the “Simple Buyer Seller Ontology”

4. Create the SimpleBuyerSellerProtocol with the
Protocol Editor.
a. Create the two roles.
b. Create the three states.
c. Create the Request_Quote transition.
d. Create the Price_Quote_Reply transition

5. Import the protocol into the SimpleBuyerSeller-
WithProtocol agency.
a. Assign agents to roles.

6. Finish the agents

7. Run the agents in the Agency Viewer.

Create Rules
a. Create PriceQuote rule.

b. Create SendPriceRequestToStoreAgents rule.

c. Create ReceivePriceQuotesFrom-
StoreAgents rule.

8. Run the Agents
12 – 241

C h a p t e r 12: Creating and Running Agents using Protocols
Step 1. Create the BuyerSellerWithProtocol
agency.
The first step is to create the BuyerSellerWithProtocol agency. Go
to the Project Manager and select the project containing your other
example agents (Quick Tour Projects). From the Project Manager's
File menu, select New. This will display an Agency Properties Dia-
log to appear. Type in the name of the agency (SimpleBuyerSell-
erWithProtocol) and click OK.

Step 2. Create the SimpleBuyer2 and
SimpleSeller2 agents.
Go to the Project Manager and select the new agency you created.
Now select New from the File menu. This will again display an
Agent Properties Dialog. Fill in the information and click OK. The
suggested name is SimpleBuyer2. Now repeat the process to cre-
ate a SimpleSeller2. You Project Manager should now look like
Figure 111.

Step 3. Copy or create the Simple Buyer Seller
Ontology from the system repository.
If you have not already done so, copy the Simple Buyer Seller Ontol-
ogy from the System Repository to the user repository. See Chap-
ter 10, step 1 if you encounter problems. This is a simple ontology;
the object model contains a single item, the PriceRequest class.

 Step 4. Create the SimpleBuyerSellerProtocol
with the Protocol Editor.
The next step is to create a protocol for use by the agents. This step
involves several steps which must be performed in a specific order.
The protocol being created is called the SimpleBuyerSellerPro-
12 – 242

C h a p t e r 12: Creating and Running Agents using Protocols
tocol and will be imported by the new agency. This requires defin-
ing two roles, the Buyer and Seller roles and creating a protocol
state diagram. A role is the defined pattern of communications that
an agent can assume when implementing a protocol. An agent can
assume 0,1 or more roles, depending on the protocol. Sometimes it
will be appropriate for a buyer to also be a seller and vise-versa.
Thus an agent can assume more than one role when appropriate.
The state diagram describes the state of the protocol. Do not con-
fuse this with the overall state of the agency. Transitions in the state
diagram represent changes in the state of the protocol, i.e. commu-
nications between agents.

Go to the protocol manager by selecting the Protocols tab in the
Project Manager. Click on the User icon and then select File

New... from the File menu. Name the new protocol SimpleBuy-

Figure 111. Project Manager View
12 – 243

C h a p t e r 12: Creating and Running Agents using Protocols
erSellerProtocol. Click on OK to close the window and con-
tinue. The window will appear as shown in Figure 112.

Step 4a. Create the two roles.

The first step in defining a protocol is to specify the roles that exist
in the protocol. In this particular protocol there are two roles, the
Buyer Role and the Seller Role. Click on the SimpleBuyerSeller-
Protocol item in the Protocols tree. Now select the Protocol Edi-
tor menu item from the Tools menu. This will display the drawing
canvas used to graphically construct the protocol. Now select
Roles… from the Diagram menu. This will display a dialog for
entering, editing and deleting roles from this protocol. Select the
New Role... menu item from the File menu. Now type in Buyer-
Role in the name field, a description and then enter 1 in the

Figure 112. The Protocol Manager
12 – 244

C h a p t e r 12: Creating and Running Agents using Protocols
Instances field. (The combo box is editable, so delete the label and
type 1.).

The instances allows you to specify a specific number of instances
or a range. There are three choices when specifying the value of the
instances field: zero or more, one or more, or a specific number.
The first two mean that a dynamic number of agents can implement
this particular role. For example, it may not be known how many
buyers are going to be part of an agency, so you would select "zero
or more". If you knew that at least one buyer was needed for the
protocol to work, you would choose the "one or more" option. If
there needs to be an exact number of agents implementing a role to
make the protocol work, specifying the exact number would be
appropriate. For example, you might want one and only one facili-
tator in an agency.

Click OK, this will enter the role into the Roles Dialog. Now repeat
the procedure to create a SellerRole. The Roles Dialog will now
look like Figure 113. When you are finished select File Close.
Step 4b. Create the three states.
The next step in defining a protocol is to define the communication
state diagram. To do this return to the Protocol Editor (if you
haven't already done so). Then put your mouse in the drawing area
and right-click. This will display a popup dialog that allows you to
create states and transitions.We'll use this to create the states and
transitions of the protocol. First create a new state; this is done by
selecting the New State menu item popup menu. This will display
a State Properties Dialog. Fill in the Name field with Start, then
add a description, finally, select the type as Initial for an initial state.
This means that the protocol starts from this state. The dialog will
appear as shown in Figure 114. Click on OK.
12 – 245

C h a p t e r 12: Creating and Running Agents using Protocols
Now create two more states. One non-terminal state will be of type
Standard and will be called Request and a final state will be called
Done. When you are finished, the diagram should look like Figure
115.

Figure 113. Buyer Seller Roles Dialog

Figure 114. State Properties Dialog
12 – 246

C h a p t e r 12: Creating and Running Agents using Protocols
Step 4c. Create the Request_Quote Transition
In this step you will specify the communication that causes the
event which produces a state change in the protocol. You will be
creating a template for a KQML message that will be sent and
received by the agents implementing the roles. You specify various
fields in a KQML message which will then be used by the tools to
develop message sending and handling rules in the appropriate
agents. New rules are created for each agent sending messages for
the receiving agents for handling incoming messages. The rule gen-

Figure 115. The Protocol Editor
12 – 247

C h a p t e r 12: Creating and Running Agents using Protocols
eration is accomplished when importing the protocol into an
agency.

The first step is to go to the drawing area (not over one of the cir-
ches which represents a conversational state) and right-click. Now
choose the New Transition Normal... menu item which will
cause the cursor to change to cross-hairs. Now select the state you
wish the transition to start from (the Start state), hold down the
mouse button and move it to the new transition state (the Request
state). This will display the Transition Properties Dialog. The dia-
log allows you to specify fields that go into a KQML message. Fill
in the name with Price_Request. The Transition Properties Dialog
does not allow white space in the name. Add a description like:
This transition represents a request that the Seller
Role agent fill out a PriceRequest PAC and return it.

The transition must be properly filled out for it to be added to the
protocol. The Sender, Receiver, Performative and Content Type
fields must all be specified. Add the following information:
Name: Price_Request
Sender: BuyerRole
Receiver: SellerRole
Performative: ask-one
Ontology: Simple BuyerSeller Ontology
ContentType: PriceRequest
Reply-With: price-request

It should be noted that you will not be able to find the PriceRequest
in the Content Type list until the correct ontology is selected. This
is because the ontology selection dictates which classes are avail-
able for sending. All classes defined in the object model of that
ontology are available for selection as the content type of the mes-
sage.
12 – 248

C h a p t e r 12: Creating and Running Agents using Protocols
 The Transition Properties Dialog will now appear as shown in Fig-
ure 116. Select OK after entering all of the relevant information. If
you do not complete the required fields, you will not be able to
close the dialog.

Step 4d. Create the Price_Quote_Reply transition
Create a new transition between the Request and Done states. The
fields should be filled out as follows:
Name: Price_Quote_Reply
Sender: SellerRole
Receiver: BuyerRole
Performative: tell
Ontology: Simple BuyerSeller Ontology
ContentType: PriceRequest
In-Reply-To: price-request

When you are finished, the dialog should appear as shown in Figure
117. Now save and close the Protocol Editor.

Figure 116. Price Request Transition Dialog
12 – 249

C h a p t e r 12: Creating and Running Agents using Protocols
Step 5. Import the protocol into the SimpleBuy-
erSellerWithProtocol agency.
The next step is to import the protocol into the agency. Protocols
are completely decoupled from actual agents and agencies. After
the protocols are completed they are imported into an agency (or
more than one agency) and the mapping is made between the roles
of the protocols and the agents in the agency.

First, open the SimpleBuyerSellerWithProtocol agency in the
Agency Manager. This requires either clicking on the Agencies tab
and opening the agency using the File menu, or clicking on the
desired agency in the Projects tree and then clicking the Agencies
tab. Either technique displays the SimpleBuyerSellerWithProtocol
agency in the Agency Manager. In the Agency Manager, select the
File Import Protocols… menu item. The Import Protocol Dia-

Figure 117. The Transition Properties Dialog
12 – 250

C h a p t e r 12: Creating and Running Agents using Protocols
log will be displayed with the SimpleBuyerSellerProtocol in the list.
Select this protocol and then click OK.

The next step is to make the role assignments. While in the
Agency Manager, click on the Protocols tab located on the left
side of the panel and then select the SimpleBuyerSellerProtocol.
Now select the Tools Role Editor menu item. This will display
the Role Editor tool. You can use this tools to assign agents to spe-
cific protocol roles. Select the Buyer Role in the left side panel and
then click Options Assign Agents… menu item. This will dis-
play the Assign Agents Dialog. Now select SimpleBuyer2 and click
on the Add button. You should now have a dialog like that shown
in Figure 118. Click on OK to close the dialog.

Figure 118. The Assign Agents Dialog
12 – 251

C h a p t e r 12: Creating and Running Agents using Protocols
Now select the SellerRole in the left panel and follow the same
steps except choose SimpleSeller2 agent for implementing the role.
You should now have a Role Editor that looks like Figure 119.

The next step is to update the agents that are affected by the proto-
col. This step is easily accomplished by choosing the Options
Update All Agents menu item. This has the effect of generating
information (primarily rules) for each agent that assumes a role in
the protocol. Save and Close the Role Editor using the File menu.

Step 6. Finish the agents
The next step is to complete construction of the agents. The proto-
col that was imported into the SimpleBuyerSellerWithProtocol
agency has added several key skeletal rules to the agents but they

Figure 119. Role Editor
12 – 252

C h a p t e r 12: Creating and Running Agents using Protocols
must now be completed. The protocol only provides high-level
information and you must provide additional detail.

Open the SimpleBuyer2 agent in the Agent Manager, click on the
Rules tab and select the SimpleBuyerSellerProtocol Price_Request
Message Sender rule. The Agent Manager view will look like Fig-
ure 120. The tool has generated two skeletal rules for each agent. It
has generated a message handler and a message sender rule for
each.

These rules aren't complete because some information must be gen-
erated by the developer at agent construction time. For example,
the first, second, and fourth parameters need to be added to the
sendKqmlMessage built-in action. The message handler rules have
only conditions and no actions. You must add the appropriate
actions.The use of protocols provides two main benefits; every rule
that needs to be created for communication is created. Further;
many of the conditions and actions are automatically added. How-
ever, not all of the information can be specified in the Protocol Edi-
tor.

It should be noted that the automatically generated rule names are
rather large, but the names follow a specified format. The format is
protocol-name, transition-name, and rule-type. This provides the
automatically generated rules with a unique name. Figure 120 illus-
trates these rules.

The next steps involve modifying the existing rules of the
SimpleBuyer2 agent to implement the functionality of the original
SimpleBuyer agent. If you're having trouble remembering the
details of the SimpleBuyer then review Chapter 10. The complete
SimpleBuyerSellerProtocol Price_Request Message Handler
rule is shown in Figure 121.

The remaining rules should look like those shown in Figure 122
and Figure 123. You need to create an entirely new rule, the Cre-
12 – 253

C h a p t e r 12: Creating and Running Agents using Protocols
atePriceRequest rule. In the process of updating the rules, you'll
need to edit several of the existing patterns and don't forget that you
need to use the Pac Editor to import the PriceRequest PAC. Also,
remember that there are a number of new variables that you must
create such as ?priceRequest and ?agent.

The next step is to perform a similar task for the SimpleSeller2
agent. When you're done the rules should look like those shown in
Figure 124 and Figure 125. The original SimpleSeller agent used
only two rules. Notice that this new version uses three. The auto-
matic rule generation produced one rule for handling incoming
messages and one for sending a reply. Instead of merging these two
rules, they are tied together by asserting KqmlMessage and protocol
state beliefs into the mental state and then using them as a test con-
dition in the sender rule. Note that we needed to make no changes

Figure 120. SimpleBuyer2 Skeletal Rules
12 – 254

C h a p t e r 12: Creating and Running Agents using Protocols
to the SimpleBuyerSellerProtocol Price_Request Message
Handler rule..

You can run each agent from the Project Manager by selecting the
Projects tab, clicking on the agent in the agency hierarchy and
selecting the Tools Agent Engine pull-down menu. You should
start the Seller agent executing before starting the Buyer agent. If
you have any trouble getting an agent to run you may want to
examine the RADL code provided with the example agents in the
AgentBuilder distribution.

Compare the RADL code for the agents in the Example Agents
folder with the RADL code generated for your agents. Pay careful
attention to the typing of variables. Also, be sure and perform the
explicit cast of KQML message contents as discussed earlier. On a
default Windows XP installation the example RADL code can be

Figure 121. Completed SimpleBuyer2 Rule
12 – 255

C h a p t e r 12: Creating and Running Agents using Protocols
found in C:\Program Files\AgentBuilderPro1.4\Users\yourUser-
Name\RADL.

Step 7. Run the agents in the Agency Viewer.
The next step is to run the agents. The Agency Manager provides a
tool, the Agency Viewer, to help in running more than one agent at a
time. This tool allows you to start, stop, pause and reset one or all

Rules:
Name: CreatePriceRequest
Description: Creates a new instance of the PriceRequest PAC and places
it in the mental state.
(BIND startupTime)
ASSERT(PriceRequest ("CompactDisc" , 1 , "CD"))

Name: Simple Buyer Seller Protocol Price_Quote_Reply Message Handler
Description: This rule is a message handling rule for a protcol.
The conditions for it were built up automatically based upon a
transition in a protocol. Currently, there are no conditions
being added to make sure the sender is one of the agents in
the protocol. These can be added manually if needed.
The protocol was based upon the Price_Quote_Reply
 The description of the transition follows:
The response to the inquiry by the Buyer.
The following list is the complete list of valid sending agents:
[Simple Seller 2]
(%incomingProtocolMessage.protocol EQUALS "SimpleBuyerSellerProtocol")
(%incomingProtocolMessage.contentType EQUALS

com.reticular.agents.simpleBuyerSeller.PriceRequest)
(%incomingProtocolMessage.performative EQUALS "tell")
(%incomingProtocolMessage.ontology EQUALS "Simple BuyerSeller Ontology")
(%incomingProtocolMessage.inReplyTo EQUALS "price-request")
DO SystemOutPrintln (Concat ("Received price quote from " ,

%incomingProtocolMessage.sender))
DO SystemOutPrintln (Concat ("The price is " ,

ConvertToString (%incomingProtocolMessage.content.price)))
DO SleepUntilMessage ()

Figure 122. Handler Rules for Simple Buyer
12 – 256

C h a p t e r 12: Creating and Running Agents using Protocols
of the agents. It also allows you to inspect messages sent from one
agent to another and save the results of a run.

To start the Agency Viewer, open the Agency Manager with the cor-
rect agency. As mentioned previously, there are two different tech-
niques for loading an agency. You can either click on the Projects
tab in the Project Manager and select the agency in the left-hand
panel or click on the Agencies tab and then use File Open to

Name: Simple Buyer Seller Protocol Price_Request Message Sender
Description: This rule is a message sending rule for a protcol.
The action for it was built up automatically based upon a
transition in a protocol. Currently, not all of the parameters
to the message are set. Some parameters need to be filled in
manually if needed. The protocol was based upon the Price_Request
 The description of the transition follows:
This transition represents a request that the Seller Role
fill out a PriceRequest PAC and return it.
The following list is the complete list of valid sending agents:
[Simple Seller 2]
IF
(BIND ?priceRequest)
(?seller.agentInfo.name NOT_EQUALS SELF.agentInfo.name)
THEN
DO SendKqmlMessage (KqmlMessage (),

?agent.agentInfo.name ,
"ask-one" ,
?priceRequest,
"price-request" ,
"<inReplyTo>" ,
"<language>" ,
"Simple BuyerSeller Ontology" ,
"SimpleBuyerSellerProtocol" ,
"<to>" ,
"<from>")

DO SystemOutPrintln (Concat (SELF.agentInfo.name,Conat "forwarding price quote request
to" , ?agent.agentInfo.name))
DO SleepUntilMessage ()

Figure 123. PriceRequest Message Rule for Simple Buyer
12 – 257

C h a p t e r 12: Creating and Running Agents using Protocols

 R
Na
De
IF
(
TH
DO

Na
De
Th
Cu
to
 T
Th
Th
[S
IF
(
(
TH
DO
SE
SE
DO
?a
"S
DO
RE
RE
DO
Figure 124. SimpleSeller Rules

ules:
me: Init
scription: This rule puts the agent to sleep until a message arrives.

BIND startupTime)
EN
 SleepUntilMessage ()

me: Simple BuyerSeller Protocol Price_Quote_Reply Message Sender
scription: This rule is a message sending rule for a protcol.
e action for it was built up automatically based upon a transition in a protocol.
rrently, not all of the parameters to the message are set. Some parameters need
 be filled in manually if needed. The protocol was based on the Price_Quote_Reply.
he description of the transition follows:
e response to the inquiry by the Buyer.
e following list is the complete list of valid sending agents:
imple Buyer 2]

?protocolState EQUALS "SimpleBuyerSellerProtocol STATE: Request")
?assertedMessage.protocol EQUALS "SimpleBuyerSellerProtocol")
EN
 SystemOutPrintln (Concat ("Received a price request from " , ?assertedMessage.sender))
T_VALUE_OF ?assertedMessage.content.storeName TO SELF.agentInfo.name
T_VALUE_OF ?assertedMessage.content.price TO compactDiscPrice
 SendKqmlMessage (?assertedMessage, ?assertedMessage.sender, "tell" ,
ssertedMessage.content, "<replyWith>" , "price-request" , "<language>" ,
imple BuyerSeller Ontology" , "SimpleBuyerSellerProtocol" , "<to>" , "<from>")
 SystemOutPrintln (Concat ("Sent a price quote to " , ?assertedMessage.sender))
TRACT(?protocolState)
TRACT(?assertedMessage)
 SleepUntilMessage ()
12 – 258

C h a p t e r 12: Creating and Running Agents using Protocols
load the correct agency. Once the agency is loaded, select the
Tools Agency Viewer menu item. This will load the tool with
all of the agents from the agency (in this case the SimpleBuyer2 and
SimpleSeller2 agents will be loaded).

The Agency Viewer uses an icon to represent each agent. Each
agent has a default icon. These default icons can be easily replaced.
All agent icons can be found in the <agentBuilder-install-direc-
tory>/lib/icons/agentIcons/. You can create your own icons
using any kind of drawing or painting program. To make an icon
available for use, place it in this directory. To select an icon, edit
the agent icon field in the Agent Properties Dialog. There is a
browser provided to help you change the icon.

 Name: Simple Buyer Seller Protocol Price_Request Message Handler
Description: This rule is a message handling rule for a protcol.
The conditions for it were built up automatically based upon a
transition in a protocol. Currently, there are no conditions
being added to make sure the sender is one of the agents in
the protocol. These can be added manually if needed.
The protocol was based upon the Price_Request
 The description of the transition follows:
This transition represents a request that the Seller Role
fill out a PriceRequest PAC and return it.
The following list is the complete list of valid sending agents:
[Simple Buyer 2]
WHEN
(%incomingProtocolMessage.protocol EQUALS "Simple Buyer Seller Protocol")
(%incomingProtocolMessage.contentType EQUALS

com.reticular.agents.simpleBuyerSeller.PriceRequest)
(%incomingProtocolMessage.performative EQUALS "ask-one")
(%incomingProtocolMessage.ontology EQUALS "Simple BuyerSeller Ontology")
(%incomingProtocolMessage.replyWith EQUALS "price-request")
DO
ASSERT("SimpleBuyerSellerProtocol STATE: Request")
ASSERT(%incomingProtocolMessage)

Figure 125. The Price_Request Message Handler Rule
12 – 259

C h a p t e r 12: Creating and Running Agents using Protocols
Notice that icon labels use different colors to represent the state of
the agent. As the agent’s state changes from stopped, registered, or
waiting to running you will see the state changes visually. SeeTable
14.

The first step in running the agency is to click on the Exec Reg-
ister Mode menu item. This places the tool into registration mode.
At this point, agents can join the agency. You can run the agents
either locally or remotely (using the agency runtime option agency-
mode) and they can register with the tool.

The Agency Viewer appears as an agent to the running agents; i.e.,
they communicate with the tool using KQML messages like all
other agents. The major difference is that the Agency Viewer is a
special controller type agent. After the register mode is entered, the
agents must be started. If all the agents are running on the same
computer (which is true in this case) then you can use the Exec
Run All command to start all the agents. This, in turn, causes an
Engine Options Dialog to be display for every agent that is run. In
this case, a dialog will be displayed for the SimpleBuyer2 and
SimpleSeller2 agents. Click on the OK button, for each of the
Engine Option Dialogs. After the agents are started and their con-

Table 14. Agency Viewer Colors

State Color Code

Stopped Red

Registered Pink

Ready to Begin Yellow

Running Green

Pause Cyan
12 – 260

C h a p t e r 12: Creating and Running Agents using Protocols
soles appear, you will notice that the agents are not running. This is
expected because they are waiting for the “begin” command from
the Agency Viewer. Click on Exec Begin to start the agents.

At this point the agents icon's will turn green, indicating that the
agents are running. There will be two lines drawn between the
agents, these lines represent communication between the agents.
Your Agency Viewer should resemble that shown in Figure 126.

If you look at each of the Agent Engine Consoles you will see the
output generated by the rules you created.

Figure 126. Agency Viewer with Buyer Seller Agents
12 – 261

C h a p t e r 12: Creating and Running Agents using Protocols
The SimpleBuyer2 console should look like Figure 127. The
SimpleSeller2 console should look like that in Figure 128. You
should see a warning generated by SimpleSeller2 in the error win-
dow in the agent console. This warning indicates that a modified
mental state element has been retracted. Normally, this is very use-
ful to the developer. This warning is typically generated when two
rules are operating on the same object with one modifying the
object and the other retracting it. This can often lead to errors in the
control and logic of the agent. In this particular case, it is correct to
retract the KqmlMessage object. The reason is that even though the
object was modified, we are sending it in a message and will not
need to reason with it in the future.

The Agency Viewer tool is useful for debugging agent communica-
tion during the development cycle. It provides a way to examine
messages sent between agents and a way to save the results of the
run. To examine the messages sent from the SimpleBuyer2 to the
SimpleSeller2, right-click on SimpleBuyer2 icon and select the Mes-
sage History popup menu item. This will display a dialog show-
ing the messages sent and received by this agent. To examine a
particular message, click on it in the Received or Sent lists. The
Message History dialog is shown in Figure 129.

Examine the menu items in the Agency Viewer. Under the File
menu, you will find items that will allow you to save the results of a
run (Open Run, Save Run, Save Run As…). (A run is a session in
which all message traffic between agents is monitored and cap-
tured). This menu item is also used to turn the message log on or off
(Message Log) using a check box next to the menu item.

You can use the Edit menu to edit the properties of the agents and
agencies. Use the Edit Properties… and Edit Agent Proper-
ties… items.
12 – 262

C h a p t e r 12: Creating and Running Agents using Protocols
Figure 127. Simple Buyer Console
12 – 263

C h a p t e r 12: Creating and Running Agents using Protocols
Figure 128. Simple Seller Console
12 – 264

C h a p t e r 12: Creating and Running Agents using Protocols
The Exec menu item controls execution of agents in the agency.
This menu item includes provision for registering agents (Register
Mode), running all agents (Run All), starting (Begin) and stopping
(Stop) agents, pausing the agents (Pause), and resetting the agents
(Reset). AgentBuilder allows you to control individual agents or
all agents in an agency. Use the Exec menu for global control of the
agents. You can control each agent individually by right-clicking
on it. The popup menu provides controls for running, starting, stop-
ping and pausing the agents.

The Options menu item allows you to turn on and off the agent
message display. Do this using the check box in the Options
Show Message menu item. You can also use the Options menu to

Figure 129. SimpleBuyer Messages
12 – 265

C h a p t e r 12: Creating and Running Agents using Protocols
examine the status of an agent (Options Agent Status) and to
change the message buffer size (Options Buffer Size…).

You can also save runs, edit the agent and agency properties and
specify the size of the message buffer. You can also disable the
message trace window located at the bottom of the window.

Another useful and interesting feature of the tool is the pause/
unpause and reset feature. You can globally or individually use the
pause feature to step through a protocol and examine the messages
being sent, by whom and when. You can also reset the entire
agency when necessary. Try clicking on Exec Reset. This will
rerun the agents without forcing you to restart them. Notice that the
color of the agent icons changes.

When you are finished with a development session, select Exec
Stop to stop all agents. Then choose the File Close menu item.
You will be asked whether or not you want to save the run. If you
elect to save the run, then you can retrieve all of the message infor-
mation at a later time.
12 – 266

Appendices
 – 267

The purpose of this section is to demonstrate how to use Agent-
Builder to construct several example agents by providing step-by-
step instructions. We recommend that you work through these
examples before starting your own agent development work. Prior
to starting this section, read the previous overview of the Agent-
Builder tools. If you need more information about the tools and
their operation as you work through this section, refer to the
remaining chapters in this User’s Guide.

We have also included an Example Project and several example
agnecies in the System Repository. The agents in this example
project are the same as the ones we will develop in this guided,
step-by-step introduction to AgentBuilder. You can examine these
pre-constructed agents at your leisure. However, we strongly rec-
ommend that you work through the examples described in this sec-
tion.

While all of the agents described in this section are simple, these
step-by-step exercises for constructing them will provide you with
the hand’s-on experience and training you need to get started build-
ing your own agents. This section covers most of the processes
involved in building agents including construction of object mod-
els, construction of basic agent behavioral rules, and execution and
debugging your completed agent. This section shows you how to
construct a number of related Hello World agents. Each successive
agent has increased functionality and uses more advanced tools in
the AgentBuilder toolkit.

In this step-by-step introduction you will build:

• Example Agent 1 — agent with single rule that prints “Hello
World” to the built-in console window.

• Example Agent 2 — agent that prints ‘Hello World’ to the con-
sole once every 10 seconds, and variations on this agent that
demonstrate other aspects of AgentBuilder.
 – 268

• Example Agent 3 — agent that demonstrates the incorporation of
a PAC into rules and the run-time creation of objects.

• Example Agent 4 — agent that utilizes a GUI-based PAC and
demonstrates message passing between the user interface and
an agent.

• SimpleBuyer — agent that utilizes a GUI-based PAC and demon-
strates how a buyer can purchase a product from the least
expensive store agent.

• SimpleSeller — agent that utilizes a GUI-based PAC and demon-
strates how a store can respond to a buyer agent's request for a
product price.

Note that this section is not intended to completely describe all the
built-in functions, PACs, objects, tools, etc. in AgentBuilder, nor is
it intended to provide a tutorial on rule-based programming. You
should consult other sections of the User’s Guide and other refer-
ences to increase your understanding in these areas. This section
provides a starting point for acquainting you with many of the fea-
tures of AgentBuilder and shows you how to get started building
agents with this toolkit.
 – 269

 – 270

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment

13 – 271
C h a p t e r 1 3

Running Agents Outside
the AgentBuilder
Environment

This chapter provides detailed information
on executing agents outside the Agent-
Builder environment. This chapter
describes:

• Required directories and files
• Running agents in the Windows envi-

ronment
• Running Agents int he UNIX environ-

ment
• Debugging Agencies

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
This chapter provides details for exporting and running agents out-
side the AgentBuilder development environment. One you have
completed you agent development, you will likely want to move the
agents to one or more machines for their actual execution. Remem-
ber, that once you have completed the development of an agent,
you can easily run it in a stand-alone mode without requiring
AgentBuilder.

You will need the following directories and files in order to execute
the AgentBuilder agent runtime engine:

• JRE directory
• lib/agentBuilder.jar
• Engine batch file OR engine script file
• Agent's RADL file
• any class files being used in the Agent's PACs

The procedure for exporting agents for execution in a Microsoft
Windows environment is slightly different from that required for
execution in a UNIX environment. The following paragraphs pro-
vide instructions for exporting to each of these environments.

A. Running Agents in the Windows Environment
You must first create the directory structure that will contain your
agent files. Now follow the steps described below.

Step 1. Create File Folder
Create the file folder where the new agent files will be copied to.
From the Windows Explorer, select the hard drive or folder and
choose File New Folder.
13 – 272

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
Step 2. Copy AgentBuilder JRE Directory
Copy the AgentBuilder JRE directory to the new agent directory.
Again, from the Windows Explorer, select the folder where Agent-
Builder is installed, right-click the Jre folder and select Copy. Now,
right-click the new agent's folder and select Paste.

Step 3. Copy AgentBuilder lib Folder
Using the same method described above, copy the AgentBuilder lib
folder and the engine.bat file, and paste them in the new agent's
folder.

Step 4. Copy Agent RADL File(s)
Copy the RADL file and paste them in the new agent’s folder. (If
you plan on running more than one agent in the same JVM, make
sure to copy over their RADL files as well). The default location for
the RADL files is in the AgentBuilder's Users/<username>/RADL
directory. Copy the RADL file over to the new agent's folder under
the "radl" folder (You will need to create the new radl folder).

Step 5. Copy Class Files
The agent will need all class files it uses in it's PACs. You can copy
the class files into the agent's lib directory. The directory hierarchy
should be similar to that shown in Figure 130.

Step 6. Modify Engine Batch File
Modify the engine batch file to startup the agent automatically.
13 – 273

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
A. Edit the Batch File

Open the engine.batch file with the Windows Notepad application.
Right-click the engine.bat file and select Edit.
B. Modify the Classpath

Add the agent's lib folder to the classpath. You will need to append
the ;.\lib to the end of the classpath.
C. Replace the Main Class File
Replace the main class file

Figure 130. Windows Directory Structure
13 – 274

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
com.reticular.agentBuilder.agent.engine.EngineLauncher

with com.reticular.agentBuilder.agent.engine.AgentEngine .
D. Append RADL File Name

Append the radl file name extension to the end of the line. (e.g.
Radl\Agent.radl).
E. Add AgentEngine Options

Add any AgentEngine options to the right of the radl files. The fol-
lowing is an example of how the command line should look like
after making the above changes. These AgentEngine options spec-
ify no display of the agent's console window, log all output to the
file AgentOutput.txt and log all error messages to the file

AgentErrors.txt.

Make sure this is on a single line:
.\jre\bin\java -ms5m -mx32m -classpath ".\lib\

agentBuilder.bat;.\lib" com.reticular.

agentBuilder.agent.engine.AgentEngine radl\Agent.radl -no-
console -no-system-out -no-system-err -o AgentOutput.txt -e

AgentErrors.txt

Step 7. Test the Agent
To test the agent and make sure it starts up, double click the modi-
fied batch file. You can now move the agent's folder to a new
machine and run the agent.
13 – 275

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
B. Running Agents in the UNIX Environment
The first step in preparing your agents to run in the UNIX environ-
ment is to create the directory structure that will contain your files.
Then follow the steps outlined below.

Step 1. Create Directory
Create the directory where the new agent files will be copied to. For
example:

cd ~
mkdir agent

Step 2. Copy Directories and Files
Copy the following directories and files (located in the Agent-
Builder directory) to the new agent directory: jre and lib directories.
For example:
cp -r /usr/local/agentBuilder/jre ~/agent/

cp -r /usr/local/agentBuilder/lib ~/agent/

Step 3. Copy RADL File
We now need to copy the RADL file (If you plan on running more
than one agent in the same JVM, make sure to copy over their
RADL files as well). The default location for the radl files is in
.AgentBuilder/RADL

located in your home directory. Copy the RADL file to the new
agent's radl directory (You will need to create the radl directory).
For example:
13 – 276

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
mkdir ~/agent/radl

cp ~/.AgentBuilder/RADL/agent.radl ~/agent/radl

Step 4. Copy PAC Class Files
The agent will need all class files it uses in it's PACs. You can copy
the class files into the agent's lib directory. For example:
cp ~/javaClasses/*.class ~/agent/lib

The directory hierarchy should be similar to that shown in Figure
131.

Figure 131. UNIX Directory Structure
13 – 277

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
Step 5 Create a Script File
Create a script file to run the agent. In this file, we set options
needed for the agent to execute.
A. Create the Script File

Create the file runagent.sh under the agent directory. Open it with
your favorite editor and add the command line that starts the agent.
Figure 132 is an example of a runagent.sh script:

For this script:

./jre/bin/java - Specifies the path to the java executable

-Xms5m -Xmx32m - Java options for the JVM

-classpath ... - The classpath for the agent's JVM

com...AgentEngine - Main class for starting the agent

#!/bin/csh

cd into the agent directory

cd /home/user/agent

Run the agent's jvm

./jre/bin/java -Xms5m -Xmx32m -classpath ./lib/

agentBuilder.bat:./lib

com.reticular.agentBuilder.agent.engine.AgentEngine
radl\Agent.radl

-no-console -no-system-out -no-system-err -o AgentOutput.txt

-e AgentErrors.txt

Figure 132. UNIX Agent Script
13 – 278

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
radl/Agent.radl - The agent's RADL file

-no-console - AgentEngine option. Specifies do not display the
console window.

-no-system-out -no-system-err - AgentEngine option. Specifies
do not print any output or error messages to the console window.

-o AgentOutput.txt - AgentEngine option. Specifies log all output
to file AgentOutput.txt

-e AgentErrors.txt - AgentEngine option. Specifies log all error
output to file AgentErrors.txt

Step 6. Test the Agent Script
Test the agent script to make sure it starts correctly. You can now
move the agent's directory to a new machine and run the agent
there.
13 – 279

C h a p t e r 13: Running Agents Outside the AgentBuilder Environment
13 – 280

Appendix A. KQML
Performatives

Basic Informative Performatives
tell
 :content <expression>
 :language <word>
 :ontology <word>
 :in-reply-to <expression>
 :force <word>
 :sender <word>
 :receiver <word>

Performatives of the type noted above indicate that the :content
sentence is in the sender's VKB.

deny
 :content <performative>
 :language KQML
 :ontology <word>
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>
UG APP– 281

Performatives of this type indicate that the meaning of the embed-
ded <performative> is not true of the sender. A deny of a deny can-
cels out.
untell
 :content <expression>
 :language <word>
 :ontology <word>
 :in-reply-to <expression>
 :force <word>
 :sender <word>
 :receiver <word>

A performative of this type is equivalent to a deny of a tell. Untell
is weaker than telling the negation of the sentence. The sender may
not have the negation in its VKB either. Also, the inclusion of the
untell performative is obviously redundant, however this is pre-
ferred to deficiency.

Database Performatives
These performatives, INSERT, DELETE-ONE, etc. provide an ability
for one agent to request another agent to insert or delete sentences
in its VKB.
insert
 :content <expression>
 :language <word>
 :ontology <word>
 :reply-with <expression>
 :in-reply-to <expression>
 :force <word>
 :sender <word>
 :receiver <word>
UG APP– 282

The sender requests the receiver to add the :content sentence to its
VKB. The performative can either fail or succeed. Possible errors
and warning conditions include:

• content duplicates sentence already in VKB.
• content contradicts sentence already in VKB.
• sender is not authorized to INSERT content.
uninsert

:sender <word>
:receiver <word>
:in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>
:content <expression>

This performative is a request to reverse an insert that took place in
the past by deleting the inserted expression. Performatives like
insert and delete can only be used when an agent has advertised that
it is going to accept them. Such an advertisement implies the accep-
tance of the corresponding uninsert and undelete messages.
Although it is tempting to view insert and delete as complementary
and use delete in the place of uninsert, and insert instead of unde-
lete, it is preferable to use performatives of the un- variety because
(a) an agent might advertise only an insert or only a delete for a par-
ticular :content, and (b) to emphasize that the intent of the un- per-
formative is to reverse an action that has taken place rather than
negate its effects. An uninsert can only be used after a correspond-
ing insert.
delete-one

:content <performative>
:aspect <expression>
:order {first | last | undefined}
:language KQML
:ontology <word>
UG APP– 283

:reply-with <expression>
:in-reply-to <expression>
:sender <word>
:receiver <word>

The sender requests the receiverdelete-one sentence from its VKB
which matches :content. Note that performatives of this type make
most sense with languages that define schema variables.

The :aspect parameter describes the form of the desired reply. For
the match of the deleted :content in the recipient's VKB, the reply
will be the :aspect with all of its schema variables replaced by the
values bound to the corresponding schema variables in the deleted
sentence. The value of the :aspect parameter defaults to the value
of the :content parameter. If the :aspect is NIL, then no response
will be given for a successful deletion.

The optional :order parameter specifies whether the sentence to be
deleted should be the first or last one found in the VKB. This will
only make sense to some agents, e.g., Prolog-based ones. The
default value for the :order parameter is “undefined.” In addition,
the performative can either fail or succeed. Possible errors and
warning conditions are:

• no sentence matching content in VKB.
• content necessarily true in VKB.
• sender is not authorized to DELETE content.
delete-all
 :content <performative>
 :aspect <expression>
 :language KQML
 :ontology <word>
 :reply-with <expression>
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>
UG APP– 284

This performative is like delete-one except that the reply should be
a collection of instantiated aspects corresponding to all deleted sen-
tences matching the :content. Also, the performative can either
fail or succeed. Possible errors and warning conditions are:

• no sentence matching content in VKB.
• all content necessarily true in VKB.
• sender is not authorized to DELETE content.
undelete

:sender <word>
:receiver <word>

 :in-reply-to <word>
 :reply-with <word>
 :language <word>
 :ontology <word>
 :content <expression>

This performative is a request to reverse a delete that took place in
the past by inserting the deleted expression(s). An undelete can
only be used after a corresponding delete-one or delete-all. In either
case, it undeletes whatever was deleted in the first place, assuming
of course that the original delete action was executed successfully
(i.e., no error or sorry was sent in response).

Basic Responses
error
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>
 :comment <string>
 :code <integer>

A performative of this type indicates that the sender can not under-
stand, or considers to be illegal, the message referenced by the :in-
reply-to parameter. The :code parameter gives a numeric code to
UG APP– 285

classify the error type. The :comment parameter can be used to
return a string, further describing how the sender considers the mes-
sage to be ill-formed.
sorry
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>
 :comment <string>
This type of performative indicates that the sender understands, but
is not able to provide any (more) response(s) to, the message refer-
enced by the :in-reply-to parameter. A performative of this type
may be used in response to an evaluate or ask-one query when no
other reply is appropriate. The optional :comment parameter can be
used to pass a string which describes the situation leading to the
refusal to provide a response or additional responses.

Basic Query Performatives
ask-if
 :content <expression>
 :language <word>
 :ontology <word>
 :reply-with <expression>
 :sender <word>
 :receiver <word>

A performative of this type is the same as evaluate except that the
:content must be a sentence schema in the :language. In other
words, the sender wishes to know if the :content matches any sen-
tence in the recipient's VKB.
ask-one
 :content <expression>
 :aspect <expression>
 :language <word>
 :ontology <word>
UG APP– 286

 :reply-with <expression>
 :sender <word>
 :receiver <word>

A performative of this type is like an ask-if except that the :aspect
parameter describes the form of the desired reply. For some match
of the :content in the recipient's VKB, the reply will be the :aspect
with all of its schema variables replaced by the values bound to the
corresponding schema variables in :content. The value of the
:aspect parameter defaults to the value of the :content parameter.
Note that performatives of this type make most sense with lan-
guages that define schema variables.
ask-all
 :content <expression>
 :aspect <expression>
 :language <word>
 :ontology <word>
 :reply-with <expression>
 :sender <word>
 :receiver <word>

A performative of this type is like ask-one except that the reply
should be a collection of instantiated aspects corresponding to all
matches of the :content sentences on the recipient's VKB.

Multi-Response Query Performatives
stream-all
 :content <expression>
 :aspect <expression>
 :language <word>
 :ontology <word>
 :reply-with <expression>
 :sender <word>
 :receiver <word>
UG APP– 287

This type is like ask-all except that rather than replying with the
collection of instantiated aspects, the responder should send a series
of performatives. When taken together, these should identify the
members of that collection.

eos
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>

The "end of stream" performative indicates that the sequence of
responses to an earlier multi-response message (e.g., stream-all)
:in-reply-to has terminated successfully. No more responses will
be sent.

Basic Effector Performatives
achieve
 :content <expression>
 :language <word>
 :ontology <word>
 :force <word>
 :sender <word>
 :receiver <word>

Performatives of this type are requests that the recipient try to make
the sentence in :content true of the system .
unachieve
 :content <expression>
 :language <word>
 :ontology <word>
 :sender <word>
 :receiver <word>

A performative of this type is the same as a deny of an achieve.
UG APP– 288

Generator Performatives
The following performatives comprise a generator mechanism for
the delivery of responses to a KQML performative. This mecha-
nism allows an agent to explicitly retrieve responses in a series.
This is especially useful when there are a large number of responses
and the agent is not able to efficiently buffer incoming responses.
standby
 :content <performative>
 :language KQML
 :ontology <word>
 :reply-with <expression>
 :sender <word>
 :receiver <word>

This type indicates that the sender wants the recipient to take the
would-be response(s) from the performative in :content and
announce its readiness to accept requests for the responses.
ready
 :reply-with <expression>
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>

This type indicates that the sender will answer requests for the
responses to the performative contained in some performative with
the :in-reply-to label. The :reply-with parameter is, in function,
the returned generator.

next
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>
UG APP– 289

This type indicates that the sender wishes to receive the next
response from those promised by the performative identified by the
:in-reply-to parameter.
rest
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>

This type indicates that the sender wishes to receive the remaining
responses, in a stream, from those promised by the ready performa-
tive identified by the :in-reply-to parameter. This performative
does not have a :reply-with parameter because the :in-reply-to
parameter of the next response should match the :reply-with
parameter of the performative embedded in the original standby
message.
discard
 :in-reply-to <expression>
 :sender <word>
 :receiver <word>

This type indicates that the sender will issue no more replies to the
ready performative identified by the :in-reply-to parameter.

Capability-Definition Performatives
advertise
 :content <performative>
 :language KQML
 :ontology <word>
 :force <word>
 :sender <word>
 :receiver <word>

This type indicates that the sender is particularly suited to process
the class of KQML performatives described by the :content
UG APP– 290

parameter. If the embedded performative is missing any parame-
ters (defined for the embedded performative), then those parame-
ters may take any otherwise legal values.

Notification Performatives
subscribe
 :content <performative>
 :ontology <word>
 :language KQML
 :reply-with <expression>
 :force <word>
 :sender <word>
 :receiver <word>

This type indicates that the sender wishes the recipient to tell it
about future changes to what would be the response(s) to the
KQML performative in the :content parameter.

Networking Performatives
register
 :name <word>
 :sender <word>
 :receiver <word>

This type indicates that the sender can deliver performatives to the
agent named by the :name parameter. This subsumes the case when
the sender calls itself by this name.

unregister
 :name <word>
 :sender <word>
 :receiver <word>

This type is the same as a deny of a register.
UG APP– 291

forward
 :to <word>
 :from <word>
 :content <performative>
 :language KQML
 :ontology <word>
 :sender <word>
 :receiver <word>

This type indicates that the sender wants the :to agent to process
the performative in the :content parameter as if it came from the
:from agent directly. It is important that the :to agent receive the
package, not just the performative, or it will think that the perfor-
mative is from the next-to-last step in the path.

This will normally entail that the response(s) are also wrapped in
forward(s), since the responder will want to deliver the response(s)
to the requesting agent. Achieving this may involve the use of a
package or other networking performatives. However, it is possible
that agent A must use a package to send a performative to B, but B
can send a performative to A directly.

Previously, we defined three levels of KQML syntax: the commu-
nication (package) layer, the message layer, and the content layer.
The current approach is a proper generalization, since the layers
arise from the embedding of performatives.

broadcast
 :from <word>
 :content <expression>
 :ontology <word>
 :language <word>
 :sender <word>
 :receiver <word>
UG APP– 292

This type indicates that the sender would like the recipient to route
the broadcast performative to each of its outgoing connections,
unless the recipient has already received a broadcast performative
with this :reply-with. This serves cycle detection.
transport-address

:name <word>
:content <expression>
:language <word>
:ontology <word>

The transport-address performative is a way to define an associa-
tion between a symbolic name for a KQML agent and a transport
address.

Facilitation Performatives
broker-one
 :content <expression>
 :ontology <word>
 :language KQML
 :reply-with <expression>
 :sender <word>
 :receiver <word>

This type indicates that the sender wants the recipient to process the
embedded performative through the help of a single agent that is
particularly suited to processing the embedded performative. Pre-
sumably, such suitability was established using the :advertise per-
formatives.
broker-all
 :content <expression>
 :ontology <word>
 :language KQML
 :reply-with <expression>
 :sender <word>
UG APP– 293

 :receiver <word>

This type is similar to broker-one except that the sender wants the
recipient to enlist the help of all agents particularly suited to pro-
cessing the embedded performative. The recipient of the broker-
all replies with a list of all responses.
recommend-one
 :content <expression>
 :ontology <word>
 :language KQML
 :reply-with <expression>
 :sender <word>
 :receiver <word>

This type indicates that the sender wants the recipient to reply with
the name of a single agent that is particularly suited to processing
the embedded performative.
recommend-all
 :content <expression>
 :language KQML
 :ontology <word>
 :reply-with <expression>
 :sender <word>
 :receiver <word>

This type indicates that the sender wants the recipient to reply with
a list of names of agents that are particularly suited to processing
the embedded performative.

recruit-one
 :from <word>
 :content <expression>
 :language KQML
 :ontology <word>
 :sender <word>
 :receiver <word>
UG APP– 294

This type indicates that the sender wants the recipient to forward
the embedded performative to a single agent that is particularly
suited to processing the embedded performative. This differs from
broker-one because the recruited agent will forward its response
directly to the original sender.
recruit-all
 :from <word>
 :content <expression>
 :ontology <word>
 :language KQML
 :sender <word>
 :receiver <word>

This type is similar to recruit-one except that the sender wants the
recipient to forward the embedded performative to all agents partic-
ularly suited to processing the embedded performative. The
recruited agents individually forward their responses to the original
sender.
UG APP– 295

UG APP– 296

Appendix B. Bibliography

Cheong, F.-C. (1996). Internet Agents: Spiders, Wanderers, Brokers, and Bots. In-
dianapolis, IN: New Riders.

Finin, T., Fritzon, R., McKay, D., & McEntire, R. (1994/1994a). KQML as an
agent communication language. In Proceedings of the Third Internation-
al Conference on Information and Knowledge Management (CIKM'94),
ACM Press.

Finin, T., Fritzson, R., McKay, D., & McEntire, R. (1994b). KQML - A Language
and Protocol for Knowledge and Information Exchange (Technical Re-
port No. CS-94-02). University of Maryland, Department of Computer
Science.

Finin, T., Weber, J., Wiederhold, G., Genesereth, M., Fritzon, R., McGuire, J.,
Shapiro, S., McKay, D., Pelavin, R., & Beck, C. (1994c). Specification
of the KQML Agent-Communication Language plus example agent pol-
icies and architectures (DRAFT Report), DARPA Knowledge Sharing
Initiative External Interface Working Group.

FIPA Foundation for Intelligent Physical Agents, “FIPA 97 Specification Part 1
Agent Management,” Specification Oct 10, 1997.

Foner, L. N. (1993). What's An Agent, Anyway? A Sociological Case Study.
(Agents Memo 93-01), Massachusetts Institute of Technology.

Franklin, S., & Graesser, A. (1996). Is it an agent, or just a program?: A taxonomy
for autonomous agents.

Giaratanno, J. and G. Riley (1989), Expert Systems PWS-Kent.
UG APP– 297

Gilbert, D., & et al (1996). The role of intelligent agents in the information infra-
structure.

Hayes-Roth, B. (1995). An architecture for adaptive intelligent systems. Artificial
Intelligence, 72, 329 - 365.

Labrou, Y. and T. Finin, (1994). “A semantics approach for KQML - a general
purpose communication language for software agents,” University of
Maryland.

Labrou, Y., (1996). “Semantics for an agent communication language,” in Com-
puter Science and Electrical Engineering Department. Baltimore, MD:
University of Maryland Graduate School, pp. 116.

Maes, P. (1995). Intelligent Software. Scientific American, 273(3).

Minsky, M. (1985). The Society of Mind. New York, NY: Simon and Schuster.

Newell, A. (1988). Putting It All Together. In D. Klahr & K. Kotovsky (Eds.),
Complex Information Processing: The Impact of Herbert Simon. Hills-
dale, NJ: Lawrence Erlbaum.

Nwana, H. S. (1996). Software Agents: An Overview. Knowledge Engineering
Review.

Rich, E. (1983). Artificial Intelligence. New York: McGraw Hill.

Rumbaugh, J., et al (1991). Object-Oriented Modeling and Design, Englewood
Cliffs, NJ: Prentice Hall.

Russell, S. J., & Norvig, P. (1995). Artificial Intelligence: A Modern Approach.
Englewood Cliffs, NJ: Prentice Hall.

Shoham, Y. (1990). Agent-Oriented Programming (Technical Report No. TR
STAN-CS-90-1335). Stanford University.

Shoham, Y. (1991). AGENT-0: A simple agent language and its interpreter. In
Proceedings of the Ninth National Conference on Artificial Intelligence,
Vol II. (pp. 704 - 709). Anaheim, CA: MIT Press.

Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1),
51 - 92.

Shoham, Y. (1995). CSLI Agent-oriented Programming Project: Applying soft-
ware agents to software communication, integration, and HCI (CSLI
UG APP– 298

Web page). Stanford University, Center for the Study of Language and
Information.

Smith, D. C., Cypher, A., & Spherer, J. (1994). KidSim: Programming agents
without a programming language. Communications of the ACM, 37(7),
55 - 67.

Sowa, J., (1984). Conceptual Structures: Information Processing in Mind and Ma-
chine. Reading, MA: Addison-Wesley.

Thomas, S. R. (1993) PLACA, An Agent Oriented Programming Language. PhD
Thesis, Stanford University.

Thomas, S. R. (1994). The PLACA Agent Programming Language. In M. J.
Wooldridge & N. R. Jennings (Eds.), Lecture Notes in Artificial Intelli-
gence (pp. 355 - 370). Berlin: Springer-Verlag.

White, J. E. (1995). Telescript Technology: Mobile Agents (White Paper). Gener-
al Magic.

Wooldridge, M. J., & Jennings, N. R. (Ed.). (1995). Intelligent Agents: ECAI-94
Workshop on Agent Theories, Architectures, and Languages. Berlin:
Springer-Verlag.
UG APP– 299

UG APP– 300

Index

Symbols
?message ...189

A
action ...40
Action Editor105
Actions105, 124, 168, 181, 190
actions ...38
Agencies ..250
agencies ...25
Agencies… ..119
Agency ..75
agency ...25, 73
Agency Manager250, 256
Agency Properties Dialog118, 242
Agency Viewer256, 259, 261
agenda ...51
Agent Engine255
agent engine ..73
Agent Engine Console261
Agent Engine Options110, 127, 137
Agent Interpreter49
Agent Manager ...97, 102, 105, 110, 121,
122, ...125, 137, 138, 143, 146, 163, 166,
168,172, 178, 181, 184, 191
Agent Manger171
agent program77
Agent Properties119, 163, 196, 219
Agent Properties Dialog242, 259
Agent Properties…262
Agent Status266
AGENT-0 ..37
AgentBuilder27, 84
agent-oriented programming72
Agents133, 197, 220
analysis ..72
artificial intelligence30
ask-if ..286

ASSERT 139, 147, 168
Assign Agents Dialog 251
Assign Agents… 251
Attributes .. 155
autonomy .. 31
Available Objects 178

B
Begin .. 261, 265
behavioral rule 41, 42
behavioral rules 40, 49, 72, 76, 105
belief ... 37
beliefs ... 60
BIND 123, 135, 181
Binding Dialog 200, 223
BNF .. 60
Boolean 166, 169
Browse .. 159
Buffer Size… 266
Built-In Actions 171
Built-in Actions 124, 135, 137, 143

C
Capabilities 38, 40
capabilities 49, 51, 72, 76
capability .. 39
Chapter overview 3, 23, 55, 71, 83
Class Properties 157
CLASSPATH 108, 159
Clear Verbose Options 128
Cloneable .. 161
Close ... 266
collaborative agents 33
collaborative learning agents 33
commitment 37, 40
Commitment rules 38
Commitments 40
commitments 49, 51, 76
Index - 1

Index

Communication Dialog176
communication layer57
Communications99, 176
Communications Dialog99, 196, 219
Communications…119, 196, 219
communicative actions37, 40, 42, 51
competence ..33
Concat136, 190
Concept Mapper97
conceptual mapping tools75
Conditions ...141
Constructor168, 182
content layer ..57
contentType188
current beliefs51
CURRENT_IP_ADDRESS100, 177
currentTime135, 136

D
DAI ..68
DARPA Knowledge Sharing initiative 52
debugging72, 77
Defaults ...92
Definded RHS Elements125
Define RHS Elements147
Defined Java Instances147
Defined Message Variables Dialog ...185
Defined PAC Instances166
Defined Variable87, 141
Defined Variables181, 189
Defined Variables…185
design ..72
Diagram ...244
Directory ...159
Directory Dialog159
Distributed AI68
Domain analysis75
domain knowledge73

E
Engine Options Dialog 260
EQUALS 141, 169, 185, 188
Everything .. 127
Example Agents 255
Exec 260, 261, 265
executability 39
execution cycle 51
expert system 32
Export Dialog 158

F
Freeze ... 137

G
Generate Agent Definition 108
Generate Java Files 158
goal ... 49

H
Hello(String val) 168
Heterogeneous agent systems 36

I
IF .. 42, 105
Import 102, 178
Import Class Files 97
Import Class Files… 175
Import Dialog 178, 197, 220
Import Protocol Dialog 250
Import Protocols… 250
inference engin 39
Information agents 35
Initial beliefs 38
initial beliefs 49, 72, 76
initial commitments 38, 49, 72
Index - 2

Index

initial intentions49, 72
Initial Java Instance147, 166
Initial PAC Instance103, 166, 179
initial state ...245
Instances147, 169, 190, 245
Instances Dialog135, 183
Instances... ...123
Instances… 135, 136, 147, 149, 169, 170,
182
Integer137, 147
intelligence ..33
intelligent agent36
Intelligent Agents24
intelligent software30
intention ..49
intentions51, 76
interagent communication75
interface agents33
interlingua ...52
IP number ..177

J
Java97, 102, 147, 152, 159, 166
Java Instance Properties147
Java Instances146, 169
Java Types ...141

K
keywords ...62
knowledge base60
Knowledge Query and Manipulation Lan-
guage27, 52, 56
knowledge-based system68
KQML56, 61, 68, 174, 184, 185
KQML message58
KQML Parameters62
KQML Performatives

Basic Effector Performatives

achieve 288
unachieve 288

Basic Informative Performatives
deny 281
tell 281
untell 282

Basic Query Performatives
ask-all 287
ask-one 286
evaluate 286

Basic Responses
error 285
sorry 286

Capability-Definition Performatives
advertise 290

Database Performatives
delete-all 284
delete-one 283
insert 282

Facilitation Performatives
broker-all 293
broker-one 293
recommend-all 294
recommend-one 294
recruit-all 295
recruit-one 294

Generator Performatives
discard 290
next 289
ready 289
rest 290
standby 289

Multi-Response Query Performatives
eos 288
stream-about 287
stream-all 287

Networking Performatives
break 293
broadcast 292
Index - 3

Index

forward292
register291
transport-address293
unregister291

Notification Performatives
monitor291
subscribe291

KQML String Syntax59

L
Learning ..31
Left-Hand Side106, 140
LHS106, 140, 171, 185
Literal Value125

M
Mental Changes147
mental changes38, 51
Mental Condition122, 124
Mental Conditions168, 188
Mental model39
mental model40, 42, 51
mental state ...37
Mentalistic Agents37
Message Condition188
Message Conditions184
Message History262
message layer57
Message Log262
Message Properties Dialog187
Methods155, 157
Mobile agents34
Modeler ...152

N
Name ...147, 171
natural language30

New Agency 117
New Agent 91, 119, 163
New Message Variable Dialog 185
New Objec .. 181
New Object 96, 155, 168
New Object Dialog 168
New Object… 182
New Ontology 154
New Project 116
New Rule 140, 169
New Transition 248
New Variable 141, 185
New Variable… 141

O
Object Model 154, 175, 178
object model 75
Object Modeler 95, 152, 155
object modeling tools 75
Object Models 164
Object Properties 96
Ontologies 195, 217
Ontologies… 119
ontology 73, 75, 93
Ontology Manager 93, 154, 175
Ontology Properties 154
Open Rule Dialog 144
Open Run .. 262
Operators . 123, 135, 136, 139, 141, 147,
149, 168, 169, 181, 185, 188, 190
Options 137, 143, 172, 251, 252, 265

P
PAC 166, 174, 184
PAC Editor 102, 146, 152, 163, 166, 178,
198, ... 220
Pac Editor ... 254
PAC Instance Editor 102, 179
Index - 4

Index

PAC Instances98, 102, 124, 166, 178
PAC Properties103
PacCommSystem182
PACs98, 102, 113, 152, 161, 168
Panel Options106
parameters keywords67
Paste Agent133
pattern variables39
Pause ...265
perception ..31
performative59, 64, 67, 188
PLACA ..38
Planning ..51
precondition ..39
primary preconditions39
private actions37, 40, 42, 51
Program Manager163
Program Output128
Project Accessory Classes (PACs)102
Project Manager .89, 110, 116, 121, 133,
153,175, 176, 178, 242, 243, 255, 257
Project Properties Dialog116
Projects250, 255
Properties92, 94, 98
Properties…133, 262
Protocol Editor245, 249, 253
Protocol editors75
Protocols243, 244, 251

Q
Quick Tour Ontology164

R
RADL73, 108, 125
reactivity ..31
real-time ..30
Received ..262
Register Mode260, 265

Reset ... 265, 266
Resume ... 138
Reticular Agent Definition Language 38
RHS 106, 135, 171
RHS Elements 137
Right Hand Side 107, 135, 139
Right-Hand Side 106
Right-Hand-Side 124
RMI (remote method invocation) 100
Role Editor 252
Roles Dialog 245
rule .. 51
Rule Editor 105, 107, 122, 123, 124, 133,
135, .. 137, 138, 140, 144, 147, 168, 169,
171, ... 181, 185
Rule Editor Panel Options 140
Rule Properties 141
Rule Properties Dialog 122
Rule Properties Panel 122
Rules 98, 105, 134, 184
rules .. 51
Run Agent 110, 127, 137, 143
Run All 260, 265
Run-Time Agent Engine 77

S
Save Run ... 262
Save Run As… 262
Select All .. 158
Selected Object 164
Selected Objects 164
SELF ... 179, 181
semantic constraints 67
Sent ... 262
Set Engine Options 128
SET_VALUE_OF 147
Show Message 265
ShutdownEngine 143, 171
Sleep ... 137
Index - 5

Index

software agent29
software agents24
Specify Attribute Values103
Standard ..246
startupTime124
State Properties Dialog245
Stop ...265, 266
String136, 142, 168, 183, 190
syntactic categories67
System Repository242
SystemOutPrintln124, 135

T
testing ..72
THEN ..42, 105
Tools .138, 146, 154, 163, 166, 168, 178,
181, ..255, 259
Transition Properties Dialog248, 249

U
undelete ...285
uninsert ..283
Update ...102
Update All Agents252
User Repository175

V
Value 125, 136, 137, 142, 147, 168, 169,
183, ..187
Value Dialog125, 136, 137
Values ..187, 190
Values… ..187
Variable Name141, 185
Variable… ...141
Verbose Options127, 128, 137
virtual knowledge base60
VKB ..61

void PacCommSystem 182

W
WHEN .. 42, 105
WHEN-IF-THEN 105
WHEN-IF-THEN statements 42
Index - 6

	AGENTBUILDER
	Table of Contents
	AGENTBUILDER 1-1
	Introduction UM-1
	Chapter 1 - Introduction UM-3

	Part I. Agents and Agent Development UM-21
	Chapter 2 - Introduction to Agents UM-23
	Chapter 3 - Agent Communications Languages UM-55
	Chapter 4 - Agent Development Process UM-71

	Part II. Getting Started with AgentBuilder UM-79
	Chapter 5 - Getting Started UM-83
	Chapter 6 - Building Simple Agents - Example Agent 1 UM-115
	Chapter 7 - A More Complex Agent (Example Agent 2) UM-131
	Chapter 8 - Simple Agent with a PAC UM-151
	Chapter 9 - An Agent with a Graphical PAC UM-173
	Chapter 10 - Creating Agents that Communicate UM-193
	Chapter 11 - Agents that Communicate with CORBA UM-215
	Chapter 12 - Creating and Running Agents using Protocols UM-239

	Appendices UM-267
	Chapter 13 - Running Agents Outside the AgentBuilder Environment UM-271

	List of Figures
	List of Tables
	Chapter 1
	Introduction
	A. AgentBuilder Features
	B. AgentBuilder Development Tools
	C. RunTime System
	D. Technical Support
	Telephone
	Email Support

	E. System Requirements
	Personal Computers
	Windows 98/NT/2000
	Macintosh Support

	UNIX Workstations
	Solaris
	Linux

	F. Using This Guide
	Style

	G. If You Never Read Manuals...
	Table 1. Checking out AgentBuilder

	H. Installation Instructions
	I. Product Family
	AgentBuilder Lite
	AgentBuilder Pro

	J. Frequently Asked Questions (FAQ)

	Chapter 2
	Introduction to Agents
	A. Introduction to Intelligent Agents
	What are Intelligent Agents?
	Why are They Important?
	Why are They Difficult to Build?
	AgentBuilder - a Toolkit for Agent Construction

	B. Characteristics of Intelligent Agents
	Intelligent Software Agents
	Table 2. Attributes of an Intelligent Agent

	What Isn’t An Agent
	Agent Classification
	Heterogeneous Agent Systems

	C. Intelligent Agent Architectures
	Background: Mentalistic Agents
	Shoham’s Work
	Agent Mental Models
	Beliefs
	Capabilities
	Commitments
	Behavioral Rules
	Intentions
	Agent Interpreter
	KQML
	Table 3. Summary of Reserved Performatives

	Chapter 3
	Agent Communications Languages
	A. KQML
	KQML Language Description
	Layer of Communication
	KQML String Syntax
	KQML Semantics
	KQML Parameters
	Table 4. Summary of Reserved Parameter Keywords and their Meanings
	KQML Performatives

	Table 5. Summary of Reserved Performatives
	New Performatives

	B. KQML Conclusions

	Chapter 4
	Agent Development Process
	A. The Process
	Organize Project
	Analyze Problem Domain
	Define Agency Architecture
	Specify Agent Behavior
	Create Agent Application
	Agent and Agency Debugging

	Chapter 5
	Getting Started
	A. Introduction
	Menus, Combo-Boxes and Accumulators
	Building Complex Patterns with the Accumulator Paradigm
	Variable Naming Conventions

	B. Quick Tour
	Ontology Manager
	Object Modeler

	Agent Manager
	PAC Editor
	Action Editor
	Rule Editor
	Running the HelloWorld Agent
	On-Line Help
	Overview of Typical Agent Development

	Chapter 6
	Building Simple Agents - Example Agent 1
	Table 6. Building the Hello World Agent
	Step 1. Create Hello World Project and Agency.
	Step 2. Creating the Hello World Agency
	Step 3. Create Your First Hello World Agent
	Step 4. Create the Agent’s Behavioral Rules
	Step 4a. Start the Rule Editor
	Step 4b. Create LHS Pattern
	Step 4c. Create RHS Action
	Step 5. Create the RADL file.
	Step 6. Run the Agent.

	Chapter 7
	A More Complex Agent (Example Agent 2)
	Table 7. Creating Agents by Modifying Behavior
	Step 1. Copy Previous Agent
	Step 2. Alter Rule to Run Continuously
	Step 2a. Open the Rule Editor with Hello Rule Loaded
	Step 2b. Alter the LHS Pattern
	Step 2c. Modify the RHS Elements

	Step 3. Run the Agent
	Step 4. Adding Rules to Change Agent Behavior
	Step 4a. Alter Hello rule’s RHS
	Step 4b. Create new Quit rule’s LHS
	Step 4c. Create the New Quit rule’s RHS

	Step 5. Rerun Agent
	Table 8. Rule Creation (in Mental Conditions)
	Step 6. Add Initial Objects.
	Step 6a. Create Initial Objects
	Step 6b. Alter the Hello rule’s RHS.
	Step 6c. Alter the Quit rule’s LHS.

	Chapter 8
	Simple Agent with a PAC
	Table 9. Simple Agent Using PAC
	Step 1. Create New Ontology
	Step 2. Create a Hello Object in the Object Modeler
	Step 3. Generate Java Template File for the Hello Class.
	Step 4. Create new agent
	Step 5. Import Hello class into a HelloPAC
	Step 6. Create PAC Instance
	Step 7. Create Java Instance
	Step 8. Create rules to utilize PAC
	Step 8a. Create Init rule.
	Step 8b. Create Print Rule.
	Step 8d. Create Quit rule.

	Step 9. Run agent

	Chapter 9
	An Agent with a Graphical PAC
	Table 10. Creating an Agent with Graphical Interface PAC
	Step 1. Create appropriate ontology
	Step 2. Create New Agent
	Step 3. Define the PAC Instance
	Step 4. Create Rules.
	Step 4a. Create the BuildAndLaunchHelloWorldFrame rule.
	Step 4b. Create the PrintGreeting Rule.

	Step 5. Run the Agent

	Chapter 10
	Creating Agents that Communicate
	Table 11. Creating Two Agents that Communicate with Each Other
	Step 1. Create SimpleBuyerSeller Ontology
	Step 2. Create SimpleSeller Agent
	Step 3. Import PAC Object and create initial Java instance
	Step 4. Create rules.
	Step 4a. Create the WaitForIncomingMessage rule.
	Step 4b. Create the RespondToIncomingMessage rule.

	Step 5. Create SimpleBuyer agent.
	Step 6. Import PAC Object.
	Step 7. Create rules.
	Step 7a. Create the CreatePriceQuote Rule.
	Step 7b. Create the SendPriceRequestToStoreAgents rule.
	Step 7c. Create the ReceivePriceQuotesFromStoreAgents rule.

	Step 8. Run agents.

	Chapter 11
	Agents that Communicate with CORBA
	Table 12. Creating Two Agents that Communicate with Each Other
	Step 1. Create CORBA Compatible PAC(s)
	Step 2. Create SimpleBuyerSeller Ontology
	Step 3. Create SimpleSeller Agent
	Step 4. Import PAC Object and create initial Java instance
	Step 5. Create rules.
	Step 5a. Create the WaitForIncomingMessage rule.
	Step 5b. Create the RespondToIncomingMessage rule.

	Step 6. Create SimpleBuyer agent.
	Step 7. Import PAC Object.
	Step 8. Create rules.
	Step 8a. Create Price Quote rule.
	Step 8b. Create Send price request to store agents rule.
	Step 8c. Create Receive price quotes from store agents rule.

	Step 9. Modify Agency Communications
	Step 10. Modify Agent Communication
	Step 11. Run the Nameserver
	Step 12. Run agents.

	Chapter 12
	Creating and Running Agents using Protocols
	Table 13. Creating Two Agents with Protocols
	Step 1. Create the BuyerSellerWithProtocol agency.
	Step 2. Create the SimpleBuyer2 and SimpleSeller2 agents.
	Step 3. Copy or create the Simple Buyer Seller Ontology from the system repository.
	Step 4. Create the SimpleBuyerSellerProtocol with the Protocol Editor.
	Step 4a. Create the two roles.
	Step 4b. Create the three states.
	Step 4c. Create the Request_Quote Transition
	Step 4d. Create the Price_Quote_Reply transition

	Step 5. Import the protocol into the SimpleBuyerSellerWithProtocol agency.
	Step 6. Finish the agents
	Step 7. Run the agents in the Agency Viewer.
	Table 14. Agency Viewer Colors

	Chapter 13
	Running Agents Outside the AgentBuilder Environment
	A. Running Agents in the Windows Environment
	Step 1. Create File Folder
	Step 2. Copy AgentBuilder JRE Directory
	Step 3. Copy AgentBuilder lib Folder
	Step 4. Copy Agent RADL File(s)
	Step 5. Copy Class Files
	Step 6. Modify Engine Batch File
	A. Edit the Batch File
	B. Modify the Classpath
	C. Replace the Main Class File
	D. Append RADL File Name
	E. Add AgentEngine Options

	Step 7. Test the Agent

	B. Running Agents in the UNIX Environment
	Step 1. Create Directory
	Step 2. Copy Directories and Files
	Step 3. Copy RADL File
	Step 4. Copy PAC Class Files
	Step 5 Create a Script File
	A. Create the Script File

	Step 6. Test the Agent Script
	Appendix A. KQML Performatives

	Basic Informative Performatives
	Database Performatives
	Basic Responses
	Basic Query Performatives
	Multi-Response Query Performatives
	Basic Effector Performatives
	Generator Performatives
	Capability-Definition Performatives
	Notification Performatives
	Networking Performatives
	Facilitation Performatives
	Appendix B. Bibliography

	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

